OpenMP programming course

Alfredo Buttari (alfredo.buttari@irit.fr)

How to use this document

What is org-mode

This is org-mode document. Org-mode is a markup language which allows to
write text documents containing executable code blocks.

Org-mode can do much more than this and you can find out more here.

Org-mode works in emacs (the best editor in the world).

Code blocks

You can do two things with code blocks (besides simply reading them):

1. execute: this can be done using the C-c C-c (Ctrl-c Ctrl-c) keybinding.
The stdout of the code will be appended below the code block itself

2. tangle: tangling a code block means creating a separate file that contains
the code which can thus be compiled and run as usual. If you hit C-c C-v
C-t (this call the emacs function org-babel-tangle) all the code blocks
in this file will be tangled. If, instead, you only want to tangle a single
code blocks, go to that block and hit C-u C-c C-v C-t

Compiling and running a tangled code block

Once you have tangled a code block, you can compile and run it like any other
code. For the code blocks of this document to work, you have to use the following
compile command:

gcc —fopenmp -I. aux.c code_block.c -o code_block
And then you can run it by launching the code_block executable

./code_block

Some other useful tricks

« Set an environment variable: in order to set an environment variable
within emacs you have to hit M-x setenv then write the name of the

https://orgmode.org

variable, hit enter, write its value and hit enter again

Refresh images in an org-mode document: if images don't show up,
use the command M-x org-redisplay-inline-images

Show this document as a presentation: to show this document
as a sequence of slides, you must install the emacs org-tree-slide
package. Then open the document and execute the command M-x
org-tree-slide-mode. You can mode forward and backward using the >
and < keys. The setup code at the bottom of this file should automagically
install this package upon opening

Export and org-mode document: Org-mode lets you export org-mode
documents in various formats such as pdf or html. Just hit C-c C-e and
follow the instructions.

When you open this document, the code block at the bottom (in the
Setup section) is supposed to be executed automatically to setup your
environment. If this does not happen (it may be the case in older emacs
version), just go there and hit C-c C-c to execute it manually. Also,
the two code blocks named auxc and auxh are supposed to be tangled
automatically. If this does not happen, do it manually.

Introduction

Parallel computer architectures

MEM

CPU CPU

MEM

CPU CPU

MEM

CPU

CPU

NET

CPU

Roughly speaking, parallel computers can be classified into two types:

1. Shared memory: all the CPUs share one (logical) memory, i.e., all
processes can access the same addressing space regardless of the CPU
they are running on. This makes it simple to communicate data from one

process to another

2. Distributed memory: the computer is actually formed of multiple node,
each having one or more CPUs and its own memory. Nodes are connected
through a network. A process running on one node can only access data
on the local memory; therefore, if it needs data that is on another node, a

message must be exchanged through the network

Shared memory: SMP vs NUMA

One "logical memory" does not necessarily mean that only one physical memory

exists. If multiple memory modules exist, access to data may non-uniform

CPU

o Symmetric Multi-Processor (SMP): all CPUs can access to all data with
the same bandwidth and latency

e Non-Uniform Memory Access (NUMA): all CPUs can access to all data
but bandwidth and latency depends on where the data is placed

CPU CPU

MEM]—[MEM

CPU CPU

<
=
=
<
=
<

Both types of shared-memory architectures can be programmed using the same
tools and technologies. When performance is a concern, though, special care
must be taken for NUMA machines (we will not cover in this course)

Multicore processors: why?

Until the early 00's all processors had only one core (in fact we did not use the
word "core" at all). Then why have multicore processors become ubiquitous?
Energy consumption is the reason why:

P =CV2f

however there is a linear dependence between f and V', therefore P grows as the
cube of f!!!

Because the performance of single-core processors could only be improved by
increasing the frequency, this trend became unsustainable.

Multicore processors design relies on Thread Level Parallelism to improve
performance. This means that more transistors are used to assemble multiple
execution units (i.e., cores) on a single chip. This improves performance with
only a linear increase in the energy consumption: the capacitance C' grows
because of the increased number of transistors.

In fact, it is also possible to produce faster processors which consume less energy!!!
Consider a quad-core processor with frequency 0.6 f: it will be 2.4 times faster
and consume roughly 15\% less energy

Multicore processors: why?

48 Years of Microprocessor Trend Data

107 |
Ay
6 VY
10° | ateas
A ‘fx?“
105 - ‘L‘l‘i
s o2t
(AL ' ..’ e®

10° | sh il ofR e
N A ’*. . - 3
10 | SRR ‘I.- e 43241 Al
A n N A vy .
1 || - k4 vy ¥ }7 v ."“‘
10 . . v X R
A u Y_ ¥y v " e
U F'Y [] v v v v vy & 9
10 —; S G B e WL Menenn ¢
| | | |
1970 1980 1990 2000 2010

Year

COriginal data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, Q. Shacham, K. Olukc
MNew plot and data collected for 2010-2019 by K. Rupp

Multicore architecture

Multicore computer: what does it look like?

The hwloc library is designed to retrieve all the details of the architecture. For
example, on my computer, I can run the 1stopo program from hwloc to retrieve
the architecture:

ssh plafrim lstopo --of png

How to program multicore computers?
Many options exist, but they are not all simple, portable, efficient etc.
Examples:
e pThreads (POSIX Threads): difficult to use and debug, not fully portable
e Intel TBB/OneAPI: proprietary
e Cilk: limited support and portability

e OpenMP: extremely portable, efficient, relatively easy to use. huge
community and support

The OpenMP standard

Basic ideas and components

OpenVIP

OpenMP (Open specifications for MultiProcessing) is an Application Program
Interface (API) to explicitly direct multi-threaded, shared memory parallelism.

o First standard 1.0 was published in 1997

o Latest standard is 5.2 published in November 2021
— Full specs are at this URL
— Examples and exercises are at this URL

o Many resources at https://www.openmp.org

The OpenMP standard is developed by an advisory board that includes many
members from academia (UTK, LBNL, ANL, NASA,...) and industry (Intel,
AMD, NEC, Fujitsu, NVIDIA,...)

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5.2.1.pdf
https://www.openmp.org

Basic ideas and components

OpenVIP

e OpenMP is Comprised of three primary API components:
1. Language directives
2. Runtime library routines
3. Environment variables
o Portable:
— Specifications for C/C++ and Fortran
— Already available on many systems (including Linux, Win, IBM, SGI
etc.)

Disclaimer

OpenVIP

This course does not cover the whole OpenMP standard. The OpenMP manual
is over 600 pages as of today (v5.2)

Only a subset of constructs and clauses will be presented.

Tons of tutorials can be found online but better be used with moderation.

Fork-join execution model

OpenMP is based on a fork-join execution model:

parallel region parallel region

o Execution is started by a single thread called master thread

e when a parallel region is encountered, the master thread spawns a set of
threads

o the set of instructions enclosed in a parallel region is executed

o at the end of the parallel region all the threads synchronize and terminate
leaving only the master

Parallel region

Parallel region directive syntax

#pragma omp parallel [clause]
if (scalar or logical expression)
private(list)
firstprivate(list)
shared(list)
default(private | shared | none)
reduction(operator:list)
num_threads(scalar integer expression)

/* Structured code block */

o The master is a member of the team and has thread number 0

e Starting from the beginning of the region, the code is duplicated and all
threads will execute that code.

e There is an implied barrier at the end of a parallel section.

o If any thread terminates within a parallel region, all threads in the team
will terminate.

A simple hello world example in OpenMP
Just a simple hello world with multiple threads:
o start with serial execution
e open a parallel region where:
— each thread prints a message

#pragma omp parallel

{
printf ("Hello world!\n");
}

A slightly more complex hello world example in OpenMP
Just a simple hello world with multiple threads:

o start with serial execution

e open a parallel region where:

— each thread reads its identifier and the total number of
threads using, respectively, the omp_get_thread_num() and
omp_get_num_threads ()

— prints a message

#pragma omp parallel

{
printf("Hello world from thread %2d in a pool of %2d.\n", omp_get_thread_num(),
omp_get_num_threads());

Parallel region: how many threads?

How many threads do we have in the parallel regions of a code? The number of
threads depends on:

o Evaluation of the if clause (one or many)

o Setting of the num_threads clause

e Use of the omp_set_num_threads() library function
e Setting of the OMP_NUM_THREADS environment variable

o Implementation default - usually the number of CPUs on a node, though
it could be dynamic

Parallel region: how many threads?
Complete example

int iam, nth, n=5;

#pragma omp parallel

{
printf ("Region 1 thread %24 / %2d.\n",
}

omp_set_num_threads(n) ;

#pragma omp parallel

{
printf ("Region 2 thread %2d / %2d.\n",
}

#pragma omp parallel num_threads(2)

{
printf ("Region 3 thread %2d / %2d.\n",
}

#pragma omp parallel if(n<5)
{

printf ("Region 4 thread %2d / %2d.\n",
X

Hello world with a bug

omp_get_thread_num(),

omp_get_thread_num(),

omp_get_thread_num(),

omp_get_thread_num(),

Here is a minor variant of the hello world program...with a bug

int iam, nth;

#pragma omp parallel
{

iam = omp_get_thread_num() ;
nth = omp_get_num_threads() ;

do_stuff(1);

omp_get_num_threads());

omp_get_num_threads());

omp_get_num_threads());

omp_get_num_threads());

printf ("Hello world from thread J%d in a pool of %2d.\n", iam, nth);

}

Data sharing 1/2
e Most variables are shared by default

10

Global variables include:

— Fortran: COMMON blocks, SAVE and MODULE variables
— C: File scope variables, static

Private variables include:

— Loop index variables (in !$SOMP DO) constructs
— Stack variables in subroutines called from parallel regions

Fortran: Automatic variables within a statement block

The OpenMP Data Scope Attribute Clauses are used to explicitly define
how variables should be scoped. They include:

— private

— firstprivate
— shared

— default

— reduction

Data sharing 2/2

private(list): a new object of the same type is created for each thread
(uninitialized!)

firstprivate(list): Listed variables are initialized according to the
value of their original objects prior to entry into the parallel or work-
sharing construct.

lastprivate(list): The value copied back into the original variable
object is obtained from the last (sequentially) iteration or section of the
enclosing construct.

shared(1list): only one object exists in memory and all the threads access
it
default(shared|private|none): sets the default scoping

reduction(operator:1list): performs a reduction on the variables that
appear in its list.

Hello world bugfix

Let's fix the bug: by declaring iam private, each thread will have its own copy
of this variable

int iam, nth;

#pragma omp parallel private(iam)

{

iam = omp_get_thread_num();

11

nth = omp_get_num_threads();

do_stuff(1);

printf ("Hello world from thread %d in a pool of %2d.\n", iam, nth);
}

Work distribution and sharing

Dependencies
Dependencies

The interest of parallel programming is not to execute the same workload multiple
times but to distribute the workload to the available processes so that execution
time can be reduced. This implies that multiple instructions will be executed
concurrently (or, equivalently, in parallel).

Two successive statements S1 and S2 can be executed concurrently if they are
independent. According to the Bernstein conditions there exist three types
of dependencies:

« Read-After-Write or true dependency or flow dependency: if
Input(S2) overlaps with Output (S1)

« Write-After-Read or anti-dependency: if Output (S2) overlaps with
Input (S1)

o Write-After-Write or output dependency: if Output(S2) overlaps
with Output (S1)

Dependencies
Example. Are these two statements independent?

a = b+c;
e = d+a;

What kind of dependency is there? RAW. Here is a more convoluted example
for(i=1; i<n; i++)
x[i] += x[i-1];
Dependencies
Example. Are these two statements independent?

a = b+c;
b = c*2;

What kind of dependency is there? WAR. Note that WAR dependencies can be

sometimes removed!

12

d = b;
a = d+c;
b = c*x2;

Now the second and third statement have become independent. Here is a more
convoluted example

for(i=0; i<n-1; i++)
x[i] += x[i+1];
Dependencies
Example. Are these two statements independent?

c = atb;
c = 2;

What kind of dependency is there? WAW. Here is a more convoluted example
for(i=0; i<m; i++)

c += x[i];
Master

The master directive identifies a code block which is only executed by the master
thread

int iam;

#pragma omp parallel private(iam)

{

iam = omp_get_thread_num() ;

#pragma omp master

{
do_stuff(0.1);
printf(" ---> This is only done by: %2d\n",iam);
}
printf (" This is also done by: %2d.\n",iam);
}
Single

The single directive identifies a code block which is only executed by one (any)
thread

int iam;

#pragma omp parallel private(iam)

{

13

iam = omp_get_thread_num() ;

#pragma omp single

{

do_stuff(0.1);

printf (" ---> This is only done by: %2d\n",iam) ;
}
printf (" This is also done by: %2d.\n",iam);

}

Single vs master

One obvious difference between single and master is that with master only
the thread with id 0 can execute the code block. This has a risk: you have to
make sure that the master thread passes by that code block otherwise it will
never be executed.

Can you spot any other difference from executing the two code blocks above?
There is an implied barrier at the end of the single block. It can be removed
using the nowait clause

int iam;
#pragma omp parallel private(iam)
{

iam = omp_get_thread_num();

#pragma omp single nowait

{

do_stuff(0.1);

printf (" ---> This is only done by: %2d\n",iam) ;
}
printf (" This is also done by: %2d.\n",iam);

}

Parallel loops
Parallel

In the code below, all the iterations in the loop are independent. This means
that they can be executed concurrently. However the code below is wrong
because it does not produce the same result as in sequential

int i, n=4;

int al[n], bln], clnl;

#pragma omp parallel private(i)
{

14

for (i=0; i<n; i++) {
printf ("Thread ’%2d does iteration 7%2d\n",omp_get_thread_num(),i);
ali]l += bl[il+c[i];
}
}

Parallel

OpenMP provides a construct that automatically parallelizes loops by executing
chunks of iterations concurrently. Note that the loop index i is implicitly
private.

int i, n=4;
int aln], blnl, clnl;

#pragma omp parallel
{
#pragma omp for
for (i=0; i<n; i++) {
printf ("Thread 7%2d does iteration 7%2d\n",omp_get_thread_num(),i);
ali]l += blil+c[i];
}
}

Schedule

The schedule clause in the for construct specifies how the iterations of the
loop are assigned to threads:

e static: loop iterations are divided into pieces of size chunk and then
statically assigned to threads in a round-robin fashion

e dynamic: loop iterations are divided into pieces of size chunk, and dynam-
ically scheduled among the threads; when a thread finishes one chunk, it is
dynamically assigned another

e guided: for a chunk size of 1, the size of each chunk is proportional to
the number of unassigned iterations divided by the number of threads,
decreasing to 1. For a chunk size with value k (greater than 1), the size of
each chunk is determined in the same way with the restriction that the
chunks do not contain fewer than k iterations

e runtime: The scheduling decision is deferred until runtime by the environ-
ment variable OMP SCHEDULE

Schedule

Let's see how schedule works:

15

int i;
#pragma omp parallel for num_threads(4) schedule(guided,25)
for (i=0; i<400; i++)

printf("%3d 7%2d\n",i,omp_get_thread_num());

reset

set term png size 700, 400

set xlabel "iterations"

set ylabel "thread"

set yrange [-0.5:3.5]

set ytics 0,1,3

set grid ytics 1t 1 1lc 'gray80'

plot "res.data" with points pt 6 title 'Iteration'

set output

Collapse

The collapse clause allows for combining multiple loops into a single one and
for parallelizing its iterations. The number of loops to collapse can be provided
as an option

int i, j;

#pragma omp parallel for private(i,j) collapse(2)

for (i=0; i<2; i++) {
for (j=0; j<4; j++) {

printf ("Thread 7%2d does iteration i:%2d j:%2d\n",omp_get_thread_num(),i,j);
}

}

Threads synchronization

Barriers
Barrier

A barrier is simply a waiting point: all threads must wait for all the others to
reach a barrier point before moving on. Example

int iam;
double t=secs();

#pragma omp parallel private(iam)
{

iam = omp_get_thread_num() ;

if (iam==0){

16

do_stuff(0.5); // 0.5 seconds
} else {

do_stuff(0.3); // 0.3 seconds
}

#pragma omp barrier
printf ("Thread 72d reached this point at time %f.\n",iam,secs()-t);
T

Barrier

Improper use of barriers can cause deadlocks: if not all threads pass by the
barrier, those who do will be waiting forever. ..

int iam;

double t=secs();
#pragma omp parallel private(iam)

{

iam = omp_get_thread_num();

if (iam==0){
do_stuff(0.5);
} else {
do_stuff(0.3);
#pragma omp barrier

}

printf ("Thread ’%2d reached this point at time %f.\n",iam,secs()-t);
}

Critical sections
Critical

The critical directive identifies a code block which is executed in mutual
exclusion by all threads, i.e., one at a time.

int iam;

double t=secs();

#pragma omp parallel private(iam)

{

iam = omp_get_thread_num();

#pragma omp critical
{
do_stuff(0.1);
printf ("This is done by %2d at time %f\n",iam, secs()-t);

17

Critical scope

Critical sections can have names. The name argument is used to identify the
critical construct. For any critical construct for which name is not specified, the
effect is as if an identical (unspecified) name was specified. It is not possible to
have two or more threads in different critical regions that have the same name!
int iam;
double t=secs();

#pragma omp parallel private(iam)

{

iam = omp_get_thread_num() ;

#pragma omp critical (toto)

{

do_stuff(0.1);

printf("First is done by %2d at time %f\n",iam, secs()-t);
}

#pragma omp critical (titi)
{
do_stuff(0.1);
printf ("Second is done by %2d at time %f\n",iam, secs()-t);
}
}

Atomic instructions
Atomic

The atomic construct ensures that a specific storage location is accessed atom-
ically so that possible simultaneous reads and writes by multiple threads do
not result in indeterminate values. Five types of atomic constructs exist: read,
write, update, capture and compare

e read: atomically read a memory location, i.e., x can not change while
being read

int x, v;
#pragma omp parallel
{

#pragma atomic read

18

Atomic
e write: atomically write a memory location
o update: atomically update (i.e. read-modify-write) a memory location

So what's the interest of atomic? take this example: we could certainly
use critical to protect the update of x[] but this would prevent calls to
compute_one to be executed concurrently. With atomic only the update of x[]
is serialized.

double t_start=secs(), t_end;
int i, n=100, m=5, tot=0, x[5]={0,0,0,0,0%};

#pragma omp parallel for
for(i=0; i<n; i++){
#pragma omp atomic update
x[rnd_int O %m] += compute_one(0.01);

}

t_end = secs()-t_start;

for(i=0; i<m; i++)
tot += x[i];
printf ("\nTot:%10d time:%f\n",tot, t_end);

Atomic

e capture: atomically update a memory location and capture its initial or
final value

int x, v, y, w;

#pragma omp parallel
{
/* Capture initial wvalue */
#pragma atomic capture
Vo= X+t

/* Capture final value */

#pragma atomic capture
w = ++y;

19

Atomic

e compare: atomically and conditionally update a memory location
int i, n=1000, min=99999999;
int x[n];

rand_fill(x, n);

#pragma omp parallel for
for(i=0; i<n; i++){
#pragma omp atomic compare
if (x[i] < min) { min = x[i]; }

}

printf("Min is %d\n",min);

Reductions

Reductions

Assume this simple code that computes the sum of all the elements of an array
int i, sum, n=1000;

int x[n];

rand_fill(x, n); sum=0;

for(i=0; i<n; i++){
sum += x[i];

}

printf ("Sum is %d\n",sum) ;

The iterations of this loop are clearly dependent because of the updates on sum.
We could actually use a critical section or an atomic update but we would loose
all performance.

Reductions

Reductions allow us to take advantage of associativity and commutativity of
some operators (4 in this case):

int i, sum, n=1000;
int x[n];

20

rand_fill(x, n); sum=0;

#pragma omp parallel reduction(+:sum)
{
#pragma omp for
for(i=0; i<n; i++){
sum += x[i];
}
printf ("Partial Sum on %d is %d\n",omp_get_thread_num() ,sum) ;
}

printf("Sum is ’%d\n",sum) ;

The reduction clause specifies an operator and one or more list items. For
each list item, a private copy is created in each implicit task, and is initialized
appropriately for the operator. After the end of the region, the original list item
is updated with the values of the private copies using the specified operator.

Reductions

For the C language, predefined reduction operators are (note that : in the table
below is actually a |)

Operator Initializer Combiner

+ Omppriv:O OMpPoyt += OMPin

* Ol’npprivz1 OMPout *= OMPin

~ Omppriv:~0 OIMPout ~= OMPin

: ompypyiv=>0 OMPoyt (= OMPiy

" omppriv=0 OMPoyt = OMPip

&& Omppriv:1 OIMPout = OMPin && OIMPout
OmppriV:O OMPout = OINPip 2 OMPout

max omppriy=minval ompey,, = max(ompjy,,0MPpeuyt)

min omppriy=maxval ompey; = min(ompi,,0mpout)

Tasks

Task

The OpenMP task construct simply identifies a block of code which is ready to
be executed and whose execution is deferred. Once the task is created, it can
be executed by any thread, at any time. This means that we can not make
any assumptions on when a task is executed and by which thread and in which
order all the created tasks are executed.

#pragma omp parallel
{

21

#pragma omp single
{
#pragma omp task
printf ("Thead %2d does task 1\n",omp_get_thread_num());

#pragma omp task
printf ("Thead %2d does task 2\n",omp_get_thread_num()) ;

#pragma omp task
printf ("Thead %2d does task 3\n",omp_get_thread_num());

#pragma omp task
printf ("Thead %2d does task 4\n",omp_get_thread_num()) ;
}
}

Why do we need the master construct in the code above?

Task data

A slightly more complex example, with a bug:
int 1i;

printf ("Hello %p\n",&i);

#pragma omp parallel private(i)

{
#pragma omp master
{
for(i=0; i<6; i++)
{

#pragma omp task
printf ("Thread %d iteration: %d\n", omp_get_thread_num(), i);
}
}
}

What went wrong?

Task data

The value of shared variables accessed within a task might change between the
creation of the task and its actual execution. Some clauses can be used to define
the scope of variables within tasks:

¢ shared(x) means that when the task is executed x is the same variable
(the same memory location) as when the task was created

o firstprivate(x) means that x is private to the task, i.e., when the task

22

is created, a brand new variable x is created as well and its value is set to
be the same as the value of x in the enclosing context at the moment when
the task is created. This new copy is destroyed when the task is finished

e private(x) means that x is private to the task, i.e., when the task is
created, a brand new variable x is created as well. This new copy is
destroyed when the task is finished

If a variable is private in the parallel region it is implicitly firstprivate in
the included tasks

Task data

A slightly more complex example, with a bugfix:
int i;

printf ("Hello %p\n",&i);

#pragma omp parallel

{

#pragma omp master

{
for(i=0; i<6; i++)
{
#pragma omp task firstprivate(i)
printf ("Thread %d iteration: %d\n", omp_get_thread num(), i);
}

Task if

Creating and handling tasks has a cost. Therefore, it is not always worth creating
a task, for example, if the task has only little work to do. The if clause can be
used to choose whether to create a task or immediately run the code block

double w=0.5;

#pragma omp parallel
{
#pragma omp master
{
#pragma omp task
printf ("Thread %d executes this first task\n", omp_get_thread_num()) ;

#pragma omp task if(w>0.4)

{
do_stuff (w) ;
printf ("Thread %d executes this second task\n", omp_get_thread_num());

23

Taskwait

So how can we be sure that some tasks are actually executed? The taskwait
directive ensures that all the previously submitted tasks have been executed.
Note that this does not include descendants, i.e., tasks that have been generated
by other tasks.

int x, y, z;

#pragma omp parallel
{

#pragma omp master
{
#pragma omp task
x = compute_one(0.2);

#pragma omp task
y = compute_one(0.2);

#pragma omp taskwait
z = Xty;
printf("z is %d\n", z);
+
b

Task dependencies

It is possible to define an execution order by specifying task dependencies.
This is done through the depend clause and the Bernstein conditions:

e The in dependence-type. The generated task will be a dependent task of
all previously generated sibling tasks that reference at least one of the list
items in an out or inout dependence-type list.

e The out and inout dependence-types. The generated task will be a
dependent task of all previously generated sibling tasks that reference at
least one of the list items in an in, out, or inout dependence-type list.

Task dependencies

Example:

24

int a, b, ¢, x, y;
double t=secs();
#pragma omp parallel
{
#pragma omp master
{
#pragma omp task depend(out:a)

a=f_al);

#pragma omp task depend(out:b)
b=£f_b0O;

#pragma omp task depend(out:c)
c=1f_cO;

#pragma omp task depend(in:b,c) depend(out:x)
x = f_x(b, c);

#pragma omp task depend(in:a,x) depend(out:y)
y = f_y(a, x);

#pragma omp taskwait
printf("y: %d (correct value is 9) and time is %f\n",y,secs()-t);
}
}

Can you draw the dependency graph?

Task priorities

Assuming only two threads are available and all functions take one second, the
following two schedulings are possible.

25

th O f x

th 1

Time (s)

th O

th 1 f x

Time (s)

Task priorities

The priority clause can be used to give the OpenMP scheduler a hint on the
importance of a task

int a, b, ¢, x, y;
double t=secs();
#pragma omp parallel
{

#pragma omp master

{
#pragma omp task depend(out:b) priority(2)

26

b=£f_b0O;

#pragma omp task depend(out:c) priority(2)
c=1f_cO;

#pragma omp task depend(out:a)
a=f_a();

#pragma omp task depend(in:b,c) depend(out:x)
x = f_x(b, c);

#pragma omp task depend(in:a,x) depend(out:y)
y = f_y(a, x);

#pragma omp taskwait
printf("y: %d (correct value is 9) and time is %f\n",y,secs()-t);
}
}

Task dependencies and pointers

When using pointers to specify dependencies, you should dereference it to make
sure the dependence is inferred from the pointed data rather than the pointer
variable.

int x[2]={0,0};
int *p=x;
double t=secs();
#pragma omp parallel
{
#pragma omp master
{
#pragma omp task firstprivate(p) depend(out:*p)
*p = compute_one(1.0);

p+=1;

#pragma omp task firstprivate(p) depend(out:*p)
*p = compute_one(1.0);

#pragma omp taskwait
printf("x: {d,%d} (correct value is {1,1}) and time is %f\n",x[0],x[1],secs(-t);
}
}

27

Locks
Locks

A lock is a data of type omp_lock_t which can be used to prevent simultaneous
access to shared resources according to the schema

« acquire (or set or lock) the lock
o access data
o release (on unset or unlock) the lock

Acquisition of the lock is exclusive in the sense that only one threads can hold
the lock at a given time. A lock can be in one of the following states:

« uninitialized: the lock is not active and cannot be acquired/released by
any thread;

o unlocked: the lock has been initialized and can be acquired by any thread;

e locked: the lock has been acquired by one thread and cannot be acquired
by any other thread until the owner releases it.

Locks

Transitions through states can be achieved with the following routines
e omp_init_lock: initializes a lock
e omp_destroy_lock: uninitializes a lock
o omp_set_lock: waits until a lock is available, and then sets it
o omp_unset_lock: unsets a lock

e omp_test_lock: tests a lock, and sets it if it is available

Locks

Example

omp_lock_t lock;
omp_init_lock(&lock) ;

#pragma omp parallel
{
omp_set_lock(&lock) ;
printf("%d: It's my turn to use the resource\n",omp_get_thread_num()) ;
use_resource();
omp_unset_lock(&lock) ;
}

28

omp_destroy_lock(&lock) ;

Locks
Example with test lock

omp_lock_t lock;
omp_init_lock(&lock) ;

#pragma omp parallel
{

while(!omp_test_lock(&lock)){
/* if lock is already locked, I do some other useful stuff */
printf("%d: lock is busy, I do some stuff\n",omp_get_thread_num()) ;
do_stuff(0.5);

}

printf("%d: It's my turn to use the resource\n",omp_get_thread_num());
use_resource();
omp_unset_lock(&lock) ;

}

omp_destroy_lock(&lock) ;

Mistakes to avoid

Add useless loops
Do not create a new loop just for the purpose of parallelizing it

#pragma omp parallel
{
nth = omp_get_num_threads();
#pragma omp for
for(i=0; i<nth; i++){
do_stuff();
}
+

This is exactly the same as

#pragma omp parallel

{
do_stuff();
}

29

Use tasks with caution

Tasks have a relatively high overhead and should be used with caution.

e creating a task for a few operations is probably a very bad idea
e try to combine as many operations as possible into a single task as long as
this does not reduce parallelism

Minimize critical sections
Critical sections serialize the work of processes.

#pragma omp parallel for
for(i=0; i<n; i++){
#pragma omp critical
do_stuff();
}

The code above is completely sequential. The execution time will be the same
as without the parallelization but the iterations will be done in a different order.

o separate what really needs to be in the critical section from what can be
done in parallel
¢ sometimes atomic instructions can be used instead of critical

30

Don't forget the parallel section

Stupid to say but there is no parallelism if you don't put a parallel section
somewhere. Just don't forget.

Conversely, if you can merge multiple parallel sections into a single one, it might
be good to do so in order to reduce overhead

Aux code

int seed=-1;
#pragma omp threadprivate(seed)

int rnd_int() {
// & 0xTfffffff is equivalent to modulo with RNG_MOD = 2731
#if defined(_OPENMP)
if (seed==-1) seed = omp_get_thread_num()+1;
t#telse
if (seed==-1) seed
#endif
return (seed = (seed * 1103515245 + 12345) & Ox7fffffff);
}

1;

void rand_£fill(int *x, int n){
int 1i;
for(i=0; i<n; i++){
x[i]=rnd_int () %n-n/2;
}
}

long usecs O
struct timeval t;

gettimeofday (&t ,NULL) ;
return t.tv_sec*1000000+t.tv_usec;

}

double secs ()1
struct timeval t;

gettimeofday (&t ,NULL) ;
return ((double) (t.tv_sec*1000000+t.tv_usec))/1000000.0;
}

void do_stuff (double sec)q{

31

long s, e;
s=0; e=0;
s = usecs();
while(((double) e-s)/1000000 < sec)
{
e = usecs();
}
return;

}

int compute_one(double sec){
do_stuff (sec);
return 1;

}

int £_a({
do_stuff(1.0);
return 1;

}

int £ bO{
do_stuff(1.0);
return 2;

}

int £_cO{
do_stuff(1.0);
return 3;

}

int f_x(int b, int c){
do_stuff(1.0);
return b+c+1;

}

int f_y(int a, int x){
do_stuff(1.0);
return a+x+2;

}

void use_resource(){
do_stuff(1.0);
return;

}

32

int

void rand_fill(int *x, int n);

rnd_int () ;

long usecs ();
double secs ();
void do_stuff (double sec);

int
int
int
int
int
int

compute_one (double sec);
f_a();

f b0

f cO;

f_x(int b, int c);
f_y(int a, int x);

void use_resource();

33

	How to use this document
	What is org-mode
	Code blocks
	Compiling and running a tangled code block
	Some other useful tricks

	Introduction
	Parallel computer architectures
	Shared memory: SMP vs NUMA
	Multicore processors: why?
	Multicore processors: why?
	Multicore architecture
	How to program multicore computers?

	The OpenMP standard
	Basic ideas and components
	Basic ideas and components
	Disclaimer
	Fork-join execution model

	Parallel region
	Parallel region directive syntax
	A simple hello world example in OpenMP
	A slightly more complex hello world example in OpenMP
	Parallel region: how many threads?
	Parallel region: how many threads?
	Hello world with a bug
	Data sharing 1/2
	Data sharing 2/2
	Hello world bugfix

	Work distribution and sharing
	Dependencies
	Dependencies
	Dependencies
	Dependencies
	Dependencies

	Master
	Single
	Single vs master
	Parallel loops
	Parallel
	Parallel
	Schedule
	Schedule
	Collapse

	Threads synchronization
	Barriers
	Barrier
	Barrier

	Critical sections
	Critical
	Critical scope

	Atomic instructions
	Atomic
	Atomic
	Atomic
	Atomic

	Reductions
	Reductions
	Reductions
	Reductions

	Tasks
	Task
	Task data
	Task data
	Task data
	Task if
	Taskwait
	Task dependencies
	Task dependencies
	Task priorities
	Task priorities
	Task dependencies and pointers

	Locks
	Locks
	Locks
	Locks
	Locks

	Mistakes to avoid
	Add useless loops
	Use tasks with caution
	Minimize critical sections
	Don't forget the parallel section

	Aux code

