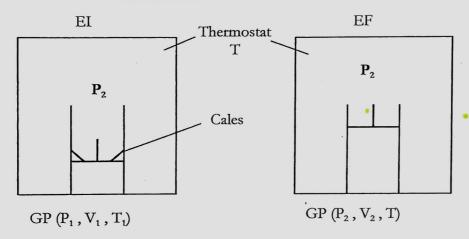


Thermodynamique

TD 3 Le 2nd principe

Exercice 1

Le cylindre contient n moles de gaz parfait, de capacité molaire à volume constant C_{vm} constante.



Les parois du piston sont diathermanes. Dans le thermostat, la température est T, la pression P₂. On enlève les cales, le piston oscille puis s'arrête. A l'équilibre (thermique et dynamique) le gaz parfait est dans l'état : (P₂, V₂, T).

- 1) La transformation est-elle monotherme ou isotherme?
- 2) Calculer le volume final V₂ en fonction de V₁, P₁, P₂.
- 3) Déterminer W et Q reçus par le gaz.
- 4) Calculer S_e et S_c (en fonction de n, R, P_1 , P_2). Commenter le signe de S_c . (Si $P_1 > P_2$ cas de la figure ou $P_2 > P_1$).

Exercice 2

Un gaz parfait (EI : P_1,V_1,T_1) subit une détente dans le vide (= détente de Joule Gay-Lussac) jusqu'à un volume $V_2=V_1(1+x)$.

- 1) Déterminer la température T2 du gaz lorsqu'il a atteint son nouvel état d'équilibre.
- 2) Exprimer la création d'entropie due la transformation en fonction de P₁, T₁, V₁ et x. (ou nR et x).
- 3) Que dire si $x \rightarrow 0$.

Exercice 3

Deux solides, de même capacité thermique C, de température T₁ et T₂ sont mis en contact, l'ensemble étant thermiquement isolé.

- 1) Calculer la température finale T_f.
- 2) Calculer ΔS et S_c pour le système.
- 3) Supposons $T_2 \approx T_1$: $T_2 = T_1$ $(1+\varepsilon)$ $\varepsilon << 1$. Exprimer ΔS . Montrer alors que la transformation tend vers une transformation réversible.

EXP ZEPRINC

1/1

P1 > P2

1/2

$$W = \int -P_{ext} dV = -P_2 \int_{V_1}^{V_2} dV = -P_2(V_2 - V_1)$$

$$Q = \Delta V - W = P_2(V_2 - V_1)$$

$$Cu_{IM} = const$$

$$1S = G \int_{T_{1}}^{T_{1}} + nR \int_{R}^{Q_{1}} \frac{P_{2}}{P_{3}}$$

$$S = \frac{Q}{T} = \frac{P_{2}(V_{2}-V_{2})}{T} = \frac{nRT}{T} - \frac{P_{2}V_{1}}{T} = nR - \frac{P_{1}}{P_{2}} \cdot \frac{P_{1}V_{2}}{T} = nR(1 - \frac{P_{2}}{P_{3}})$$

$$S_{c} = \Delta S - S_{e}$$

$$= -nR - \Omega_{1} \frac{P_{2}}{P_{1}} - nR + nR \frac{P_{2}}{P_{1}}$$

$$= nR \left(-\ln \frac{P_{2}}{P_{1}} - 1 + \frac{P_{2}}{P_{1}} \right)$$

$$\approx := \frac{P_{2}}{P_{1}}$$

$$S_{c}(x) = hR(x-1-\ln x)$$

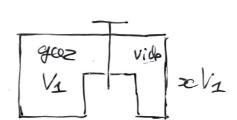
$$u'(x) = 1-\frac{1}{x} =$$

$$u'(x) = 1 - \frac{1}{x} =$$

 $\forall x \neq 1, u \in \mathcal{J} \Rightarrow Sc \in \mathcal{J}$ \Rightarrow Su transformation est irréversible

x = 1 se P1 = P2 = inutile! (il se passe rien).

211



Syst: {goz + wile}

$$\Delta U = W + Q = 0 \quad cor \begin{cases} V = cust \\ custorifuyees \end{cases}$$

$$\Rightarrow T_i = T_f \quad cor GP.$$

$$\Delta S = G_{V} \ln \frac{T_{2}}{T_{3}} + nR \ln \frac{V_{2}}{V_{4}}$$

$$= nR \ln(1+x)$$

$$Se = 0$$

$$\Rightarrow Se = 4S - Se = nR \ln(1+x) > 0$$

3/1 Syst:
$$\{S_1 + S_2\}$$

$$\Delta U = W + Q = 0$$

$$C(T_S - T_1) + C(T_S - t_2)$$

$$\Rightarrow T_S = \frac{T_1 + t_2}{2}$$

$$\Delta S = SC + SC = Cln \frac{T_f}{T_1} + Cln \frac{T_f}{T_2}$$

$$= Cln \frac{T_f^2}{T_1T_2}$$

$$= Cln \frac{(T_1 + T_2)^2}{4T_1T_2}$$

$$\Rightarrow T_2 = T_1(1 - \epsilon)$$

$$Sc = Cln \frac{(T_1 + T_1(1 + \epsilon))^2}{4T_1^2(1 + \epsilon)}$$

$$= Cln \frac{2+\epsilon}{4(1+\epsilon)}$$

$$\Rightarrow Cln \frac{4}{4} = 0$$

Exercice 4

Un récipient isolé et parois indéformables, de volume total $2V_0$ =20L est séparé en deux compartiments par une paroi escamotable. A l'état initial, chaque compartiment a un volume V_0 et une température T_0 =300 K. L'un des compartiments contient de l'hélium sous une pression P_1 =10atm, l'autre de l'argon sous P_2 =30atm. Ces deux gaz sont assimilés à des gaz parfaits, de mêmes capacités thermiques molaires. A t=0 on supprime la paroi. Lorsque l'équilibre est atteint,

1) déterminer les paramètres l'équilibre final.

2) déterminer la variation d'entropie du système global.

Exercice 5

Une mole d'hélium est enfermée dans un cylindre indéformable dont les parois sont perméables aux transferts thermiques, lui-même plongé dans un thermostat à '1'₀=273 K. Initialement le gaz est à la température T₁=300K On le laisse refroidir jusqu'à l'équilibre à température constante

1) Calculer les variations d'entropie du gaz, du thermostat, de l'Univers {gaz + thermostat}.

2) Partant de l'équilibre précédent, on réduit de moitié le volume de gaz, de manière isotherme et réversible. Calculer les ΔS (gaz, thermostat, Univers).

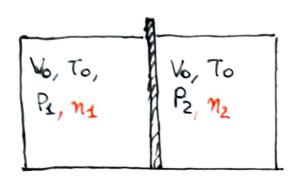
On donne $C_{V_n} = \frac{3R}{2}$ pour l'hélium.

Exercice 6

On enferme une mole de gaz parfait avec $P_0=10^6$ Pa, $T_0=1000$ K dans un cylindre adiabatique, fermé par un piston de masse négligeable. La détente est réalisée de façon irréversible en relâchant le piston sur lequel s'applique une pression $P_1=10^5$ Pa. Soit T_1 la température à l'équilibre final.

1) Exprimer T_1 en fonction de T_0 , P_1 , P_0 et γ . On prendra $\gamma=1,4$

2) Exprimer le travail fourni par le gaz et sa variation d'entropie.



n₁ + n₂ 2 V₀

411

$$\begin{cases}
P_{1}V_{0} = n_{1}RT_{0} & \text{EF} \\
P_{2}V_{0} = n_{2}RT_{0}
\end{cases}$$

$$\begin{cases}
P_{1}V_{0} = n_{1}RT_{0} & \text{car GP} \\
P_{2}V_{0} = n_{2}RT_{0}
\end{cases}$$

$$\begin{cases}
P_{1}V_{0} = n_{1}RT_{0} & \text{car GP} \\
P_{2}V_{0} = n_{2}RT_{0}
\end{cases}$$

10 principe

$$\Delta U = \Delta U_1 + \Delta U_2 = M + \emptyset = 0$$

$$\Rightarrow \Delta U_1 = -\Delta U_2 \iff n_1 C_{Vm} (T_f - T_o) = -n_2 C_{Vn} (T_f - T_o)$$

$$\iff (n_1 + n_2) (C_{Vm} (T_f - T_o)) = 0$$

$$\iff T_f = T_o$$

d'ai
$$P_{f} 2V_{o} = (n_{1} + n_{2}) RT_{o} \Leftrightarrow P_{f} = \frac{(n_{f} + n_{2}) RT_{o}}{2V_{o}} = \frac{P_{f} + P_{2}}{2}$$

$$\Delta S = \Delta S_1 + \Delta S_2$$

$$= n_1 C_{Vm} \ln \frac{T_0}{T_0} + nR \ln \frac{V_4}{V_0} + n_2 C_{Vm} \ln \frac{T_0}{T_0} + nR \ln \frac{V_4}{V_0}$$

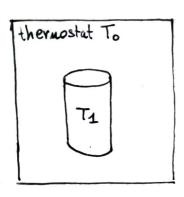
$$= R \left(-\ln \frac{V_4}{V_0} + \ln \frac{V_4}{V_0}\right) \left(n_1 + n_2\right)$$

$$= \left(n_1 + n_2\right) R \ln 2$$

$$= S_e + S_c$$
can add ab

$$\Rightarrow S_c = (n_1 + n_2) R \ln 2 > 0$$

$$\Rightarrow irréversible.$$



$$\Delta S = \frac{3R}{2} \ln \frac{T_0}{T_1}$$

$$= -1, 15 \quad \text{J.K}^{-1}$$

$$\Delta S = \frac{Q_{th}}{T_0} = \frac{Q_{th}}{T_0}$$

$$= -\frac{Q_{gaz}}{T_0}$$

$$= \frac{\Delta U}{T_0}$$

$$= \frac{G(T_0 - T_1)}{T_0}$$

$$= -\frac{G(T_0 - T_1)}{T_0}$$

$$= + 1,2 \ 5 \cdot K^{1}$$

$$\Delta S = \Delta S + \Delta S = 0,05 \text{ J.K}^{1}$$
Univers thermost gaz

reng

$$\Delta S = \Delta S - \Delta S$$

$$gaz = univ = thermost$$

$$= \Delta S + \frac{Ogaz}{T_o}$$

$$S_c = S_c$$

isoth & rev:
$$\Delta S = 0 = S_c$$

$$\Delta S = -\Delta S
gaz = \frac{Qgaz}{T_0}$$

=
$$nRlu\frac{1}{2}$$

6/1

$$\begin{cases} P_0 V_0 = \chi R T_0 \\ P_1 V_1 = \chi R T_1 \end{cases}$$

$$\Delta U = W + \varnothing \qquad \text{coer} \qquad \text{adiabatique}$$

$$= \int -P_{2} dV \qquad \text{coer} \qquad \text{wonobere}$$

$$= -P_{1} \int dV \qquad \text{coer} \qquad \text{nonobere}$$

$$= -P_{1} \left(V_{1} - V_{0} \right)$$

or $\Delta U = \frac{1}{8-1} (T_2 - T_0)$

Jou
$$\frac{R}{8-1}(T_1-T_0) = -P_1(V_1-V_0)$$

 $= -P_1V_1 + P_1V_0 RT_0$
 $= -RT_1 + \frac{P_1}{P_0} \cdot P_0V_0$
 $= -R(T_1-T_0)$
ie $T_1 = \frac{1+(8-1)P_1}{x}T_0 = 743 \text{ K}$

$$V_1 = \frac{RT_1}{P_1} = 61 \, dm^3$$

6/2

=) ir ne versible

car adiabatique