VARIABLES ALÉATOIRES FINIES

L'idée : plutôt que de modéliser une expérience aléatoire par un espace probabilisé trop grossier, on *postule* qu'un espace probabilisé $(\Omega, \mathcal{P}(\Omega), P)$ le modélise finement et on considère une application $X : \Omega \to E$ où E correspond aux évéments observables ou qui nous intéressent.

Exemple 1 On lance un dé de 6 non pipé. Modéliser cette expérience aléatoire en posant $\Omega = \{1, 2, ..., 6\}$ oblige à identifier des situations très différentes, et est abusif car un résultat de l'expérience n'est pas un nombre. On peut aussi postuler l'existence d'un espace probabilisé $(\Omega, \mathcal{P}(\Omega), P)$ modélisant finement cette expérience et considérer l'application

$$X: \left\{ \begin{array}{ll} \Omega & \to & \{1,2,\ldots,6\} \\ \omega & \mapsto & \text{le nombre lu sur la face supérieure du dé lorsque } \omega \text{ est réalisée}. \end{array} \right.$$

Exemple 2 On lance deux dés de 6 non pipés. Quelle que soit la modélisation choisie pour cette expérience aléatoire, on peut souhaiter ne s'intéresser qu'à la somme des deux valeurs obtenues (par exemple parce qu'on joue à un jeu dont le gagnant est celui qui réalise la plus grande somme). On s'intéresse alors naturellement à l'application

$$X: \left\{ \begin{array}{ll} \Omega & \to & \{2,3,\dots,12\} \\ \omega & \mapsto & \text{la somme des résultats des dés lorsque } \omega \text{ est réalisée}. \end{array} \right.$$

Les valeurs prises par X correspondent aux évéments qui nous intéressent.

En particulier les événements $\{\omega \in \Omega, X(\omega) = i\}$, où i parcourt les valeurs prises par X:

- auraient pu former l'ensemble Ω si on avait voulu modéliser très grossièrement (mais beurk!);
- forment un système complet d'événements (est-ce qu'on sait encore ce que c'est?).

Dans tout le chapitre, $(\Omega, \mathcal{P}(\Omega), P)$ désigne un espace probabilisé, et E désigne un ensemble.

I Variables aléatoires

I.1 Définition et autres exemples

Définition 1: Variable aléatoire.

- 1. On appelle <u>variable aléatoire</u> (si grosse paresse : <u>v.a.</u>) une application $X : \Omega \to E$.
- 2. Si $E \subset \mathbb{R}$, on dit que X est une variable aléatoire réelle, dans toute la suite v.a.r.
- 3. Si $E \subset \mathbb{R}^n$ pour un entier n, on dit que X est un vecteur aléatoire, dans la suite $\overrightarrow{\text{v.a.}}$.

I.2 Terminologie et notations

Notation 1 Si $X: \Omega \to E$ est une variable aléatoire, on notera :

- (X = x) l'événement $X^{-1}(\{x\})$, pour $x \in E$;
- $(X \in A)$ l'événement $X^{-1}(A)$, pour $A \subset E$.

Si de plus X est une v.a.r. (i. e. si on a $E \subset \mathbb{R}$), on notera :

- $(X \leq x)$ l'événement $X^{-1}(]-\infty,x])$;
- (X < x) l'événement $X^{-1}(] \infty, x[)$;
- $(X \geqslant x)$ l'événement $X^{-1}([x,\infty[);$
- (X > x) l'événement $X^{-1}(|x, +\infty[)$.

Remarque 1

La famille des $(X = x)_{x \in X(\Omega)}$ forme un système complet d'événements. **Notation 2** Si F est un ensemble et $f: E \to F$ est une application, on pourra noter f(X) la variable aléatoire $f \circ X$. En effet, ces gens (les probabilistes) sont des barbares.

I.3 Loi d'une variable aléatoire réelle

Définition 2: Loi.

Soit $X: \Omega \to E$ une variable aléatoire. On appelle <u>loi de X</u> l'application $P_X: \left\{ \begin{array}{cc} \mathcal{P}(X(\Omega)) & \to & [0,1] \\ A & \mapsto & P(X \in A) \end{array} \right.$

Remarque 2

On identifiera fréquemment P_X avec son prolongement naturel à $\mathcal{P}(E)$, parfois plus pratique à décrire :

$$P_X: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \to & [0,1] \\ A & \mapsto & P(X \in A) \end{array} \right..$$

Théorème 1.

Soit $X: \Omega \to E$ une variable aléatoire.

Alors $P_X : \mathcal{P}(X(\Omega)) \to [0,1]$ est une probabilité.

Bien sûr, de même, $P_X : \mathcal{P}(E) \to [0,1]$ est une probabilité.

II Lois usuelles

II.1 Loi uniforme finie

Définition 3

On dit que X suit la loi uniforme sur E et on note $X \sim \mathcal{U}(E)$ lorsqu'on a $P_X = P_u$ (sur E), i. e. lorsqu'on a $\forall x \in E, \ P(X = x) = \frac{1}{|E|}$. Si $E = \{a, a+1, \ldots, b\}$ on note $X \sim \mathcal{U}(a; b)$.

II.2 Loi de Bernoulli

Définition 4.

Soit $p \in [0,1]$. On dit que X suit la loi de Bernoulli de paramètre p et on note $X \sim \mathcal{B}(p)$ lorsqu'on a $X(\Omega) \subset \{0,1\}$ et P(X=1) = p, donc P(X=0) = 1 - p = q.

Théorème 2.

Une v.a.r. suit une loi de Bernoulli si et seulement si c'est une fonction indicatrice.

Autrement dit : $(\exists p \in [0,1], X \sim \mathcal{B}(p)) \Leftrightarrow (\exists A \in \mathcal{P}(\Omega), X = \mathbb{I}_A).$

II.3 Loi binomiale

Définition 5.

Soit $n \in \mathbb{N}$ et $p \in [0,1]$. On dit que X suit la loi binomiale de paramètres n et p et on note $X \sim \mathcal{B}(n,p)$ lorsqu'on a $X(\Omega) \subset \{0,1,\ldots,n\}$ et $\forall k \in \{0,\ldots,n\}, \ P(X=k) = \binom{n}{k} p^k q^{n-k}$ où bien sûr q=1-p.

II.4 Exercice classique : décrire la loi d'une v.a.r. donnée

III Espérance. Variance.

III.1 Espérance

Définition 6: Espérance.

On appelle espérance de X le nombre $E(X) = \sum_{x \in X(\Omega)} P(X = x) x$.

Théorème 3: Propriétés de l'espérance.

- 1. On a : $E(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\})$.
- 2. L'espérance est :
 - linéaire : $\forall X, Y : \Omega \to \mathbb{R}, \ \forall \lambda, \mu \in \mathbb{R}^2, \ E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y);$
 - positive : $\forall X : \Omega \to \mathbb{R}, \ X \geqslant 0 \Rightarrow E(X) \geqslant 0$;
 - croissante : $\forall X, Y : \Omega \to \mathbb{R}, \ X \leqslant Y \Rightarrow E(X) \leqslant E(Y).$
- 3. Si X est constante, i. e. il existe m tel que $X(\Omega) = \{m\}$, alors E(X) = m.

III.2 Variance

Définition 7: Variance.

On appelle variance de X le nombre $V(X) = E((X - E(X))^2)$.

Remarque 3

On met un carré car :

- ça permet d'augmenter les gros écarts et diminuer les petits écarts (erreurs de mesure, e.g.)
- ça devient presque un produit skyler

Remarque 4

Par positivité de l'espérance, on a toujours $V(X) \ge 0$. Ceci permet de définir l'écart-type de X $\sigma(X) = \sqrt{V(X)}$.

Terminologie : lorsqu'on a V(X) = 1 (i. e. $\sigma(X) = 1$), on dit que X est réduite.

Exemple 3 Déterminons la variance de la variable aléatoire de l'exemple ??. On reprend $X:\begin{cases} \Omega & \to \{1,\dots,6\} \\ \omega & \mapsto \text{la valeur du dé} \end{cases}$

Remarque 5

C'est un cas particulier de la loi uniforme

Théorème 4: Propriétés de la variance.

- 1. Formule de Kœnig : $V(X) = E(X^2) E(X)^2$.
- 2. Si $a, b \in \mathbb{R}$ alors $V(aX + b) = a^2V(X)$.
- 3. Si X est constante, alors V(X) = 0.

III.3 Théorème de transfert

Théorème 5: Formule de transfert.

Soit $Z:\Omega\to E$ une variable aléatoire (non nécessairement réelle) et $f:E\to\mathbb{R}$. Alors :

$$E(f(Z)) = \sum_{z \in Z(\Omega)} f(z) P(Z = z)$$

III.4 Deux inégalités fondamentales

Théorème 6: Inégalité de Markov.

Supposons X **positive**. Soit $\alpha > 0$. Alors $P(X \ge \alpha) \le \frac{E(X)}{\alpha}$.

Théorème 7: Inégalité de Bienaymé-Tchebychev.

Soit
$$\varepsilon > 0$$
. Alors $P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$.

III.5 Espérance et variance des lois usuelles

Remarque 6

Si $X \sim \mathcal{U}(a;b)$, l'espérance et la variance de X ne sont pas explicitement au programme; mais on les verra en TD.

$$X(\Omega) \subset \{0,1\} \quad \begin{cases} P(X=0) &= 1-p=q \\ P(X=1) &= p \end{cases}$$

- $E(X) = \sum_{x \in X(\Omega)} P(X = x)x = 0q + 1p = p$
- $V(X) = E(X^2) E(X)^2$ or $X^2 = X$ donc $V(X) = E(X) E(X)^2 = p p^2 = p(1 p) = pq$

Théorème 8: Cas d'une loi de Bernoulli.

On suppose $X \sim \mathcal{B}(p)$ pour un certain $p \in [0,1]$ (on note q = 1 - p). Alors:

$$X(\Omega) \subset \{0, \dots, n\}$$
$$P(X = k) = \binom{n}{k} p^k q^{n-k}$$

- E(X) = np
- V(X) = npq

Théorème 9: Cas d'une loi Binomiale.

On suppose $X \sim \mathcal{B}(n,p)$ pour un certain $(n,p) \in \mathbb{N} \times [0,1]$ (on note q=1-p). Alors:

- E(X) = np
- V(X) = npq

IV Indépendance

IV.1 Indépendance de deux variables aléatoires

Théorème 10.

Soient $X: \Omega \to E$ et $Y: \Omega \to F$ deux variables aléatoires indépendantes, et $f: E \to E'$ et $g: F \to F'$ deux applications. Alors f(X) et g(Y) sont indépendantes.

IV.2 Indépendance, espérance et variance

Théorème 11.

Soient X et Y deux v.a.r. Si X et Y sont indépendantes, alors E(XY) = E(X)E(Y).

Corollaire 1.

Soient X et Y deux v.a.r. Si X et Y sont indépendantes, alors V(X+Y) = V(X) + V(Y).

Théorème 12.

Soient X_1, \ldots, X_n des v.a.r. indépendantes deux à deux, alors $V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n)$.

IV.3 Indépendance mutuelle

Théorème 13.

Soient $p \in [0,1]$ et $X_1, X_2, ..., X_n$ des variables aléatoires **mutuellement indépendantes** telles que $\forall i, X_i \sim \mathcal{B}(p)$. Alors $X_1 + X_2 + \cdots + X_n \sim \mathcal{B}(n,p)$.

V Vecteurs aléatoires

V.1 Exemples

Remarque 7

"Théorème de Nil Venet" : quitte à considérer que Ω modélise la réalisation de toutes les expériences aléatoires possibles et imaginables, on peut toujours considérer que deux variables aléatoires quelconques sont définies sur le même univers Ω .

V.2 Lois associées à un vecteur aléatoire

Définition 8.

Soit $Z = {X \choose Y}$ un couple aléatoire.

- ullet On appelle loi conjointe de X et Y la loi de Z.
- \bullet On appelle lois marginales de Z les lois de X et Y.

Remarque 8

5. Cependant,

Définition 9.

Soit $Z = {X \choose Y}$ et $A \in X(\Omega)$. On appelle <u>loi de Y conditionnellement à $X \in A$ </u> (ou loi de Y sachant $X \in A$) l'application $\left\{ \begin{array}{ccc} \mathcal{P}(Y(\Omega)) & \to & [0,1] \\ B & \mapsto & P_{X \in A}(Y \in B) \end{array} \right.$

V.3 Covariance

Définition 10.

Soit $\binom{X}{Y}$ un couple aléatoire. On appelle <u>covariance de X et Y</u> le réel Cov(X,Y) = E((X-E(X))(Y-E(Y))).

Théorème 14: Kænig-Huygens.

Soit $\binom{X}{Y}$ un couple aléatoire. Alors Cov(X,Y) = E(XY) - E(X)E(Y).

Théorème 15.

Soit $\binom{X}{Y}$ un couple aléatoire. Si X et Y sont indépendantes alors

Remarque 9

La réciproque est fausse et on l'a déjà vu!

En effet :

Théorème 16.

La covariance est une forme bilinéaire, symétrique, et positive (seulement).

Corollaire 2: Cauchy-Schwarz.

Soit ${X \choose Y}$ un couple aléatoire. Alors $|\mathrm{Cov}(X,Y)| \leqslant \sigma(X)\sigma(Y).$

Théorème 17.

Soient X_1, \ldots, X_n des var sur Ω . $V(X_1 + \cdots + X_n) = \ldots$

V.4 Indépendance vs décorrélation

Définition 11.

Soit $\binom{X}{Y}$ un couple aléatoire. On appelle coefficient de corrélation de X et Y le réel $\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$.

Définition 12.

Soit $\binom{X}{Y}$ un couple aléatoire. On dit que X et Y sont <u>décorrélées</u> lorsqu'on a $\rho_{X,Y}=0$, i. e. $\mathrm{Cov}(X,Y)=0$.

Lemme 1.

Soit X une v.a.r. finie. On a $V(X) = 0 \Leftrightarrow X$ constante.

Corollaire 3.

Soit $\binom{X}{Y}$ un couple aléatoire avec X non constante. On a $\left|\rho_{X,Y}\right|=1\Leftrightarrow \exists (a,b)\in\mathbb{R}^2,\ Y=aX+b.$

\end exemple \end document