familles dans les \mathbb{K} -espaces vectoriels

Dans toute la feuille, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On a le droit d'utiliser les résultats vus en TACMAS.

LIBERTÉ

Exercice 1. Liberté dans \mathbb{R}^n

- 1. La famille $\left(u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, u_3 = \begin{pmatrix} a^2 \\ b^2 \\ c^2 \end{pmatrix}\right)$ de \mathbb{R}^3 est-elle libre?
- 2. Pour quelles valeurs du réel m la famille (u_1, u_2, u_3, u_4) est-elle libre dans \mathbb{R}^4 ?

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ m \\ 1 \\ 0 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 \\ 0 \\ m \\ 1 \end{pmatrix}, \quad u_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ m \end{pmatrix}.$$

3. La famille $\left(\begin{pmatrix} 1\\1\\0\\0\\\vdots\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0\\\vdots\\0 \end{pmatrix}, \dots, \begin{pmatrix} 0\\1\\0\\0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\\vdots\\0\\0\\0\\1 \end{pmatrix} \right) \text{ est-elle libre dans } \mathbb{R}^n ?$

Exercice 2. Liberté dans $\mathbb{R}^{\mathbb{N}}$

- 1. La famille $\left((\lambda n)_{n\in\mathbb{N}}\right)_{\lambda\in\mathbb{R}_{+}^{*}}$ est-elle libre dans $\mathbb{R}^{\mathbb{N}}$? Est-elle génératrice de $\mathbb{R}^{\mathbb{N}}$?
- 2. La famille $\left((q^n)_{n\in\mathbb{N}}\right)_{q\in\mathbb{R}_{+}^*}$ est-elle libre dans $\mathbb{R}^{\mathbb{N}}$? Est-elle génératrice de $\mathbb{R}^{\mathbb{N}}$?
- 3. La famille $\left((n^{\alpha})_{n\in\mathbb{N}}\right)_{\alpha\in\mathbb{R}_{+}^{*}}$ est-elle libre dans $\mathbb{R}^{\mathbb{N}}$? Est-elle génératrice de $\mathbb{R}^{\mathbb{N}}$?

Exercice 3. Liberté dans $\mathcal{C}(\mathbb{R}, \mathbb{R})$

- 1. La famille (sin, cos, ch, sh) est-elle libre dans $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$? Est-elle libre dans $\mathcal{C}(\mathbb{R},\mathbb{R})$?
- 2. La famille $(x \mapsto \sin(nx))_{n \in \mathbb{N} \setminus \{0\}}$ est-elle libre dans $C^{\infty}(\mathbb{R}, \mathbb{R})$?
- 3. La famille $(x \mapsto |x a|)_{a \in \mathbb{R}}$ est-elle libre dans $\mathcal{C}(\mathbb{R}, \mathbb{R})$?

Exercice 4. Liberté dans E

On se donne une famille libre (u_1, u_2, \ldots, u_n) d'un \mathbb{K} -ev E.

- 1. Montrer que la famille (v_1, v_2, \dots, v_n) est libre, où l'on pose $v_i = \sum_{j \leq i} u_j$.
- 2. La famille (w_1, w_2, \dots, w_n) est-elle libre, où $w_i = \sum_{j \neq i} u_j$?

DES BASES

Exercice 5. Une base adaptée

On note $\mathcal{S}_n(\mathbb{K})$ l'ensemble des matrices symétriques et $\mathcal{A}_n(\mathbb{K})$ l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{K})$. On a vu dans la feuille précédente qu'on a $\mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K}) = E$. Déterminer une base adaptée à cette somme directe.

Exercice 6. Quelques bases

- 1. Donner une base de l'espace des suites complexes stationnaires.
- 2. Justifier que $\{y \in \mathcal{D}^2(\mathbb{R}, \mathbb{R}), y'' 4y' + 4y = 0\}$ est un sev de $\mathcal{D}^2(\mathbb{R}, \mathbb{R})$ et en donner une base.

3. Donner 1 une base de $\mathbb{R}(X)$. Indication : qu'exprime le théorème de décomposition en éléments simples ?

Énoncé disponible à l'adresse suivante : http://mpsi.daudet.free.fr/.

N'hésitez pas à me poser tout type de question sur un point qui ne vous paraît pas clair par mail à l'adresse abbrug@gmail.com.