FAMILLES REMARQUABLES D'UN ESPACE VECTORIEL

Remarque 1

Pas un sev par exemple : $\mathbb{R}_{=n}[X] \cup \{0\}$ car $X^n - 1 - X^n \notin \mathbb{R}_{=n}[X] \cup \{0\}$

Familles et combinaisons linéaires Ι

I.1 Familles

Définition 1 : Rappel.

Une famille $\mathcal{F} = (v_i)_{i \in I}$ est la donnée, pour tout élément i de l'ensemble d'indices I, d'un vecteur $v_i \in E$, i.e. une application $\mathcal{F}: I \to E$.

Une famille peut être finie ou infinie.

Dans le cas $I = \mathbb{N}$, une famille indexée par I est une suite. On peut noter indifféremment $(v_i)_{i \in \mathbb{N}}$ ou $(v_0, v_1, v_2, \dots, v_n, \dots)$. Dans le cas $I = \{1, 2, \dots, n\}$, on peut noter indifféremment $(v_i)_{\{1, 2, \dots, n\}}$ ou (v_1, v_2, \dots, v_n) .

Sauf mention explicite du contraire, on indexera toutes nos familles finies par $\{1, 2, \dots, n\}$ pour un certain $n \in \mathbb{N}$. Par abus, on appellera cardinal de la famille $(v_i)_{i \in I}$ le cardinal de I.

Exemples 1: $\mathbb{K} = \mathbb{R}$, $E = \mathbb{R}^3$.

- 1. On peut considérer la famille finie $C = (e_1, e_2, e_3)$.
- 2. On peut considérer la famille infinie $\mathcal{F} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \dots, \begin{pmatrix} 3k+1 \\ 3k+2 \\ 3k+3 \end{pmatrix}, \dots \end{pmatrix} = \begin{pmatrix} 3n+1 \\ 3n+2 \\ 3n+3 \end{pmatrix} \Big|_{n \in \mathbb{N}}$.

 3. On peut considérer la famille infinie $\mathcal{G} = \begin{pmatrix} 1 \\ t \\ 2 \end{pmatrix} \Big|_{t \in \mathbb{R}}$.

Exemples 2: $\mathbb{K} = \mathbb{R}, E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}).$

- 1. Notons $f_{\lambda} = t \mapsto e^{\lambda t}$. On peut considérer la famille $(f_{\lambda})_{\lambda \in \mathbb{R}}$.
- 2. On peut considérer $(1, X, X^2, \dots, X^n, \dots)_{n \in \mathbb{N}}$ est une famille de $\mathbb{K}[X]$

I.2 Sous-familles

Définition 2 : Sous-famille.

Soit \mathcal{F} une famille. On appelle sous-famille de $\mathcal{F} = (v_i)_{i \in I}$ une famille obtenue en « retirant certains vecteurs à $\mathcal{F} \gg$, c'est-à-dire une famille de la forme $(v_i)_{i \in I}$ avec $J \subset I$.

Exemples 3

- Une sous famille de (e_1, e_2, e_3) est (e_1, e_2) .
- Une sous famille de $(f_{\lambda})_{\lambda \in \mathbb{R}}$ est $(f_{2\pi t})_{t \in \mathbb{N}}$

/!\ $(e_1, e_2, e_2, e_3) \neq (e_1, e_2, e_3)$

I.3 Combinaisons linéaires

Définition 3: Rappel.

On appelle <u>combinaison linéaire</u> des vecteurs d'une famille $\mathcal{F} = (v_i)_{i \in I}$ toute expression de la forme suivante : $\alpha_1 v_{i_1} + \alpha_2 v_{i_2} + \cdots + \alpha_r v_{i_r}$ où les α_k sont des scalaires et les i_k des éléments de I.

Le prof n'écrit jamais « combinaison linéaire », il écrit toujours CL.

/!\ Une CL des vecteurs de $(v_i)_{i\in I}$ est une somme <u>finie</u> de vecteurs de la forme $\alpha_k v_{i_k}$!

Suivant le contexte, l'expression CL pourra désigner ou bien l'expression formelle, ou bien le résultat de l'opération désignée par cette expression. Mais, quand bien même on se réfèrerait à l'expression formelle, on fait systématiquement les deux identifications suivantes :

- 1. on identifie les CL qui ne se distinguent que par l'ordre des vecteurs,;
- 2. on identifie une CL de la forme $\alpha_1 v_{i_1} + \alpha_2 v_{i_2} + \ldots + \alpha_r v_{i_r} + 0 v_{i_{r+1}}$ avec $\alpha_1 v_{i_1} + \alpha_2 v_{i_2} + \ldots + \alpha_r v_{i_r}$.

Remarque 2

Conséquence des deux identifications précédentes : une CL de (v_1, \ldots, v_n) est toujours de la forme $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n$.

Exemple 4

- Une CL des $(X^n)_{n\in\mathbb{N}}$ est un polynôme
- Une CL des $(\cos \circ (\omega \cdot id_{\mathbb{R}}), \sin \circ (\omega \cdot id_{\mathbb{R}}))_{\omega \in \mathbb{R}_+}$

Remarque 3

À toute partie $P \subset E$, on peut canoniquement associer une famille : la famille $(v)_{v \in P}$. On peut donc sans difficulté parler de CL des vecteurs d'une partie de E. On retrouve alors la notion vue dans le chapitre précédent. En particulier, on peut parler du sous-espace vectoriel engendré par une famille.

II Familles remarquables

II.1 Liberté

Définition 4.

Étant donnée une famille \mathcal{F} de vecteurs de E, on appelle $\underline{\mathrm{CL}}$ triviale des vecteurs de \mathcal{F} la CL obtenue en prenant tous les α_k nuls. La CL triviale est nulle, au sens où elle s'évalue en 0_E , le vecteur nul de E. C'est une

CL
$$(\alpha_1 x_1 + \dots + \alpha_k x_k)$$
 où $\begin{cases} (\alpha_i) \in \mathbb{K} \\ (x_i) \in E \end{cases}$

Définition 5: Liberté.

Une famille est dite <u>libre</u> lorsque sa seule CL nulle est la CL triviale. Dans le cas contraire, elle est dite <u>liée</u>.

Remarque 4

Pour tout
$$\begin{cases} (\alpha_1, \dots, \alpha_k) \in \mathbb{K}^k \\ (x_1, \dots, x_k) \in E^k \end{cases}$$
 tels que $\alpha_1 x_1 + \dots + \alpha_k x_k = 0$ alors $\alpha_1 = \alpha_2 = \dots = \alpha_k = 0$

Pour montrer qu'une famille est liée $\exists (\alpha_1, \ldots, \alpha_k)$ non tous nuls, $\exists (x_1, \ldots, x_k)$ tel que

$$\alpha_1 x_1 + \dots + \alpha_k x_k = 0.$$

Remarque 5

Par définition, une sous-famille d'une famille libre est libre. En contraposant, on obtient que si \mathcal{F} a une sous-famille liée, alors \mathcal{F} est liée. Par contre, une sous-famille d'une famille liée peut très bien être libre.

Soient
$$(j_1, \ldots, j_k) \in J$$
. Soient $(\alpha_1, \ldots, \alpha_k) \in \mathbb{K}^k$ et $(x_{j_1}, \ldots, x_{j_k}) \in E^k$ tels que $\alpha_1, x_{j_1} + \cdots + \alpha_k x_{j_k} = 0$.

On a $J \subset I$, donc $(j_1, \ldots, j_k) \subset I$. Comme $(x_k)_{k \in I}$ est libre.

Donc $\alpha_1 = \cdots = \alpha_k = 0$ Donc $(x_k)_{k \in J}$ est libre.

/!\ Une surfamille d'une famille liée est liée mais une sous-famille d'une famille liée peut être libre! Par exemple, (e_1, e_2, e_3) est libre mais (e_1, e_2, e_2, e_1) est liée

Exemples 5 Les familles des exemples 1, 2, 3 sont-elles libres?

1.
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 est libre :
Soient $(\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}$.

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

2.
$$\left(\begin{pmatrix} 3n+1\\ 3n+2\\ 3n+3 \end{pmatrix} \right)_{n \in \mathbb{N}}$$
 est liée Meth 1

$$\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} - \begin{pmatrix} 10 \\ 11 \\ 12 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Meth 2

$$2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 10 \\ 12 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$$
$$\Leftrightarrow 2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

3.
$$\begin{pmatrix} 1 \\ t \\ 2 \end{pmatrix}_{t \in \mathbb{R}}$$
 Meth 1

$$\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Meth 2

$$2\begin{pmatrix}1\\5\\2\end{pmatrix}-\begin{pmatrix}1\\4\\2\end{pmatrix}=\begin{pmatrix}1\\6\\2\end{pmatrix}.$$

4. $(\exp \circ (\lambda \cdot id))_{\lambda \in \mathbb{R}}$ est libre. Soient $k \in \mathbb{N}^{\times}$ et $\begin{cases} (\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k \\ (\lambda_1, \dots, \lambda_k) \in \mathbb{R}^k \end{cases}$ tels que, pour tout $t \in \mathbb{R}$.

$$\alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t} + \dots + \alpha_k e^{\lambda_k t} = 0.$$

But $\alpha_1 = \cdots = \alpha_k = 0$ En dérivant

$$\alpha_1 \lambda_1 e^{\lambda_1 t} + \dots + \alpha_k \lambda_k e^{\lambda_k t} = 0$$

$$\alpha_1 \lambda_1^2 e^{\lambda_1 t} + \dots + \alpha_k \lambda_k^2 e^{\lambda_k t} = 0$$

$$\vdots \quad n \text{ fois}$$

$$\alpha_1 \lambda_1^n e^{\lambda_1 t} + \dots + \alpha_k \lambda_k^n e^{\lambda_k t} = 0$$

Matriciellement,

$$\begin{pmatrix} \lambda_1^0 e^{\lambda_1 t} & e^{\lambda_2 t} & \cdots & e^{\lambda_k t} \\ \lambda_1 e^{\lambda_1 t} & \lambda_2 e^{\lambda_2 t} & \cdots & \lambda_k e^{\lambda_k t} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^n e^{\lambda_1 t} & \lambda_2^n e^{\lambda_2 t} & \cdots & \lambda_k^n e^{\lambda_k t} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

En t = 0

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^n & \lambda_2^n & \cdots & \lambda_k^n \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

En n = k - 1, la matrice est carrée.

$$\det\begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^n & \lambda_2^n & \cdots & \lambda_k^n \end{pmatrix} = \prod_{1 \leq i < j \leq k} (\lambda_i - \lambda_j) \quad \text{d'après Vandermonde.}$$

On précise : comme on a choisi $f_{\lambda_i} \neq f_{\lambda_j}$, on a $\exists t_0 \in \mathbb{R}, e^{\lambda_i t_0} \neq e^{\lambda_j t}$ ie $\exists t_0 \in \mathbb{R}, \lambda_i t_0 \neq \lambda_j t$ (car $\lambda_i t_0$ et $\lambda_j t_0$ non nuls) On a doc $\exists t_0 \neq 0, \lambda_i \neq \lambda_j$

Donc les $(\lambda_i)_{1 \leq i \leq k}$ sont 2 à 2 distincts donc la matrice est inversbile et $\alpha_1 = \cdots = \alpha_k = 0$.

Ce qu'on sait à la base :

$$(f_{\lambda_1}, f_{\lambda_2}, \dots f_{\lambda_k})$$

sont des vecteurs de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$, 2 à 2 distincts. \square

Remarque 6

La liberté est une notion intrinsèque, elle ne dépend pas de E.

Par exemple, la famille $(f_{\lambda})_{{\lambda}\in\mathbb{R}}$ est aussi libre vue comme famille de vecteurs de $\mathbb{R}^{\mathbb{R}}$.

Définition 6.

On dit que deux vecteurs u et v de E sont <u>colinéaires</u>, et on note $u \not\parallel v$, lorsqu'on a : $\exists k \in \mathbb{K}, u = kv$ ou $\exists k \in \mathbb{K}, v = ku$.

Remarque 7

- 0. La famille \emptyset est libre. $\mathbb{T} \mathbb{R} \mathbb{I} \mathbb{V} \mathbb{I} \mathbb{A} \mathbb{L}$
- 1. Pour $u \in E$, la famille (u) est libre si et seulement si on a $u \neq 0_E$.
- 2. Pour $(u, v) \in E^2$, la famille (u, v) est libre si et seulement si u et v sont non colinéaires.

DÉMONSTRATION. $1. \implies$

Soit $u \in E$ tel que (u) est libre.

Donc pour tout $\alpha \in \mathbb{K}$, $\alpha_u = 0 \implies \alpha = 0$.

En contraposant : $\alpha = 1 \neq 0$ donc $1 \times u \neq 0$

 \leftarrow Supposons $u \neq 0$.

Soit $\alpha \in \mathbb{K}$ tel que $\alpha u = 0$ donc $\alpha = 0$

2. \Leftrightarrow [(u, v) est liée $\Leftrightarrow u$ et v sont colinéaires].

 \Longrightarrow Supposons la famille (u, v) liée.

Alors il existe $(\alpha_1, \alpha_2) \in \mathbb{K}^2$ tels que

$$\alpha_1 u + \alpha_2 v = 0$$

$$\alpha_1 \neq 0 \implies u = -\frac{\alpha_1}{\alpha_2} v$$

$$\alpha_1 = 0 \implies \alpha_2 v = 0 \implies v = 0 = 0 \times u \implies u//v.$$

 \sqsubseteq Supposons u//v.

Donc il existe $k \in \mathbb{K}$ tel que u = kv ou v = ku.

ie u - kv = 0 ou v - ku = 0 donc (u, v) est liée

Une famille de 3 vecteurs 2 à 2 non colinéaires peut très bien être liée!

/!\

Exemple: La famille $(e_1, e_2, e_1 + e_2)$ est liée mais les vecteurs sont 2 à 2 non colinéaires

Exercice 1.

Idée une famille (v_1, \ldots, v_n) libre

 \Longrightarrow Si la somme est directe, montrons que la famille (v_1,\ldots,v_n) est libre.

$$\overline{\text{Soit }(\alpha_1,\dots,\alpha_n)} \in \mathbb{K}^n \text{ tels que } \underbrace{\alpha_1 v_1}_{\in \text{Vect}(v)_1} + \underbrace{\alpha_2 v_2}_{\in \text{Vect}(v)_2} + \dots + \underbrace{\alpha_n v_n}_{\in \text{Vect}(v)_n} = 0$$
 Or tout élément de $\text{Vect }(v)_1 + \text{Vect }(v)_2 + \dots + \text{Vect }(v)_n$ a une unique décomposition dans cette somme.

On sait que $0 = 0v_1 + 0v_2 + \cdots + 0v_n$ donc $\alpha_1 = \alpha_2 = \cdots = v_n$.

 \longleftarrow Supposons la famille (v_1, \ldots, v_n) libre.

Soit $v \in \text{Vect}(v)_1 + \cdots + \text{Vect}(v)_n$ tel que :

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n = \lambda_1 v_1 + \dots + \lambda_n v_n$$
 où $(\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n$ et $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$.

 $\begin{aligned} & \text{Donc } (\alpha_2 - \lambda_2) v_2 + (\alpha_2 - \lambda_2) v_2 + \dots + (\alpha_n - \lambda_n) v_n = 0 \\ & \text{Or la famille est libre, donc} \begin{cases} \alpha_1 - \lambda_1 = 0 \\ \vdots \\ \alpha_n - \lambda_n = 0 \end{cases} & \text{donc} \begin{cases} \alpha_1 = \lambda_1 \\ \vdots \\ \alpha_n = \lambda_n \end{cases} . \end{aligned}$

II.2 Caractère générateur

Définition 7.

Une famille \mathcal{F} de vecteurs de E est dite génératrice de E lorsque tout vecteur de E peut s'écrire comme CL des vecteurs de \mathcal{F} .

Remarque 8

La notion de famille génératrice n'est pas une notion intrinsèque, elle dépend de E.

Plus précisément, « \mathcal{F} est génératrice de E » peut se reformuler « $E = \text{Vect}(\mathcal{F})$ ». En particulier, toute famille \mathcal{F} est toujours génératrice d'un \mathbb{K} -ev : le \mathbb{K} -ev Vect (\mathcal{F}) !

Exemples 6 Les familles des exemples 1, 2, 3 sont-elles génératrices de E?

Méthode On prend $x \in E$. On cherche des $\begin{cases} \alpha_1, \dots, \alpha_k \in \mathbb{K} \\ v_1, \dots, v_k \in \mathcal{F} \end{cases}$ tel que $x = \alpha_1 v_1 + \dots + \alpha_k v_k$.

1. Montrons que (e_1, e_2, e_3) est génératrice de \mathbb{R}^3 .

Vect
$$(e_1, e_2, e_3) = \{\lambda e_1 + \mu e_2 + \xi e_3, (\lambda, \mu, \xi) \in \mathbb{R}^3\}$$

= \mathbb{R}^3

2. Soit $\begin{cases} a > 0 \\ b \neq 0, \text{ on regarde } \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$

On cherche $\alpha_0, \ldots, \alpha_k$ tel que

$$\sum_{i=0}^{k} \alpha_i \begin{pmatrix} 3i+1\\3i+2\\3i+3 \end{pmatrix} = \begin{pmatrix} a\\b\\c \end{pmatrix}. \tag{1}$$

On remaruqe que $\begin{pmatrix} 3n+1\\3n+2\\3n+3 \end{pmatrix} = 3n \begin{pmatrix} 1\\1\\1 \end{pmatrix} + \begin{pmatrix} 1\\2\\3 \end{pmatrix}$

(1) donne:

$$\begin{pmatrix} \sum 3i\alpha_i \\ \sum 3i\alpha_i \\ \sum 3i\alpha_i \end{pmatrix} + \begin{pmatrix} \sum \alpha_i \\ 2\sum \alpha_i \\ 3\sum \alpha_i \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\implies a - \sum_{i=1}^k \alpha_i = b - 2\sum_{i=1}^k \alpha_i = c - 3\sum_{i=1}^k \alpha_i.$$

$$\begin{aligned} a = b = 0 \implies \sum \alpha_i = 2 \sum \alpha_i \\ \implies \sum \alpha_i = 0. \end{aligned}$$

Le vecteur s'écrit $\begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$. Avec $\boxed{c=1}$, on trouve $c-3\sum \alpha_i=0 \implies c=0$

Donc $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ ne peut pas s'écrire comme CL des vecteurs $\begin{pmatrix} 3n+1 \\ 3n+2 \\ 3n+3 \end{pmatrix}_{n \in \mathbb{N}}$.

3.
$$\begin{pmatrix} 1 \\ t \\ 2 \end{pmatrix}_{t \in \mathbb{P}}$$
. Soit $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$.

Soient
$$\begin{cases} \alpha_1, \dots, \alpha_k \in \mathbb{R} \\ t_1, \dots, t_k \in \mathbb{R} \end{cases}$$
 tel que $\alpha_1 \begin{pmatrix} 1 \\ t_1 \\ 2 \end{pmatrix} + \dots + \alpha_k \begin{pmatrix} 1 \\ t_k \\ 2 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

ie

$$\begin{pmatrix} \sum \alpha_i \\ t_i \sum \alpha_i \\ 2 \sum \alpha_i \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

6

$$\begin{cases} a = 2 \\ b = 0 \implies \begin{pmatrix} \sum \alpha_i \\ t_i \sum \alpha_i \\ 2 \sum \alpha_i \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \\ \Leftrightarrow \sum \alpha_i = 2 = 2 \sum \alpha_i \end{cases}$$

4. La fonction $id_{\mathbb{R}}$ n'est pas CL des (f_{λ}) par croissance comparée.

Supposons qu'il existe $\begin{cases} (\alpha_1, \dots, \alpha_k) \\ (\lambda_1, \dots, \lambda_k) \end{cases}$ tel que $\forall t \in \mathbb{R}, \alpha_1 e^{\alpha_1 t} + \dots + \alpha_k e^{\lambda_k t}.$

- Si on avait les $\lambda_i < 0$ impossible car le 2ème terme tend vers 0
- Si on avait les $\lambda_i \leq 0$ alors le 2ème terme tend vers une constante
- S'il existe des $\lambda_i>0$: le plus grand λ_i définit la croissance du 2ème terme

side-by-side grahs of id and e(lambda t) (lambda > 0)

Donc cette famille n'est pas génératrice.

5. Soit $P = \sum_{i=0}^{d} a_i X^i \in \mathbb{K}[X]$ donc ok.

Méthode Montrer que la fonction $\sin \circ \pi id$ ne s'écrit comme CL des (f_{λ}) . La fonction $\sin \circ \pi id$ s'annule sur \mathbb{N} .

— On évalue en le bon nombre d'entiers, et on trouve un déterminant de Vandermonde.

Remarque 9

Toute famille \mathcal{F} est génératrice de Vect (\mathcal{F})

II.3 Bases

Définition 8.

On dit d'une famille \mathcal{B} de vecteurs de E que c'est une <u>base de E</u> lorsque tout vecteur de E peut s'écrire de façon unique comme CL des vecteurs de \mathcal{B} .

Proposition 1: Reformulation de la définition.

Une famille \mathcal{B} de vecteurs de E est une base si et seulement si elle est libre et génératrice de E.

DÉMONSTRATION. Soit $\mathcal{B} = (v_i)_{i \in I}$ une famille de vecteurs de E. La famille \mathcal{B} est une base si et seulement si tout vecteur de E admet exactement une décomposition comme CL des vecteurs de \mathcal{B} . Elle est génératrice si et seulement si tout vecteur de E admet au moins une décomposition comme CL des vecteurs de \mathcal{B} . Pour montrer la proposition, il suffit donc de montrer que la famille \mathcal{B} est libre si et seulement si tout vecteur de E admet au plus une décomposition comme CL des vecteurs de \mathcal{B} . Montrons-le par double implication.

Supposons \mathcal{B} libre. Soit $v \in E$ et supposons avoir deux décompositions de v comme CL des vecteurs de \mathcal{B} : $v = \alpha_1 v_{i_1} + \alpha_2 v_{i_2} + \cdots + \alpha_r v_{i_r} = \beta_1 v_{j_1} + \beta_2 v_{j_2} + \cdots + \beta_s v_{j_s}$. Quitte à réordonner les termes de chaque CL et à rajouter des termes nuls (voir la convention présentée dans la section I.2), on peut supposer avoir s = r et, pour tout $k \in \{1, \ldots, r\}, j_k = i_k$. On trouve donc $(\alpha_1 - \beta_1)v_{i_1} + (\alpha_2 - \beta_2)v_{i_2} + \cdots + (\alpha_r - \beta_r)v_{i_r} = 0_E$, puis, par liberté de \mathcal{B} , $\alpha_1 = \beta_1, \alpha_2 = \beta_2, \ldots, \alpha_r = \beta_r$. D'où l'unicité d'une telle décomposition.

 \Leftarrow Supposons que, pour tout vecteur $v \in E$, il existe au plus une décomposition de v comme CL des vecteurs de E. C'est en particulier vrai pour le vecteur nul 0_E , ce qui signifie qu'il existe au plus une CL nulle des vecteurs de \mathcal{B} . Comme la CL triviale est clairement nulle, on en déduit que la seule CL nulle des vecteurs de E est la CL triviale, c'est-à-dire que \mathcal{B} est libre.

Définition 9: (informelle).

Lorsqu'un espace vectoriel E est livré en kit avec une base, c'est-à-dire lorsque les vecteurs de cet espace sont, par définition, des CL uniques des vecteurs d'une famille C, cette famille est une base de E et on l'appelle la base canonique de E.

Exemples 7

1. L'espace vectoriel \mathbb{K}^n a pour base canonique (e_1,e_2,\ldots,e_n) où e_i est le n-uplet dont toutes les coordonnées sont nulles, sauf la i-ième qui vaut 1. En effet, les coefficients du n-uplet $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ sont x_1,\ldots,x_n , et on a bien

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots + x_n e_n.$$

- 2. L'espace vectoriel $\mathbb{K}[X]$ a pour base canonique $(1, X, X^2, \dots, X^n, \dots)$.
- 3. Pour la même raison, l'espace vectoriel $\mathbb{K}_n[X]$ a pour base canonique $(1, X, X^2, \dots, X^n)$.
- 4. L'espace $\mathcal{M}_{p,q}(\mathbb{K})$ a pour base canonique $(E_{ij})_{(i,j)\in\{1,\dots,p\}\times\{1,\dots,q\}}$

$$\mathcal{M}_{p,q}(\mathbb{K}) = \left\{ \begin{pmatrix} a_{11} & \dots & a_{1q} \\ \dots & & \dots \\ a_{p1} & \dots & a_{pq} \end{pmatrix}, a_{ij} \in \mathbb{K} \right\}$$
$$= \left\{ a_{11}E_{11} + \dots + a_{pq}E_{pq}, a_{ij} \in \mathbb{K} \right\}$$

5.

$$\mathbb{K}^{\mathbb{N}} = \{(u_0, u_1, \dots, u_n, \dots), u_i \in \mathbb{K}\}$$

$$(u_n)_n = \underbrace{u_0(1, \dots, 0, \dots, 0, \dots) + u_1(0, 1, 0, \dots) + \dots}_{\text{pas une CL finie!}}$$

donc $\mathbb{K}^{\mathbb{N}}$ n'a pas de base canonique

Remarque 10

 $((1,0,\ldots,0,\ldots),(0,1,0,\ldots),\ldots)$ est une base de l'espace vectoriel des suites de la forme $(u_0,u_1,u_2,\ldots,u_n,0,0,0,\ldots)$ ie {suites qui stationnent sur 0}

Remarque 11

À l'aide de la remarque 7, on peut reformuler la définition 5 du chapitre précédent :

- 1. Une droite (vectorielle) est un sev de E ayant une base formée d'un seul vecteur.
- 2. Un plan (vectoriel) est un sev de E ayant une base formée de deux vecteurs.

II.4 Bases adaptées

Définition 10

Étant données deux familles $\mathcal{F} = (u_i)_{i \in I}$ et $\mathcal{G} = (v_j)_{j \in J}$, on notera (notation maison) $\mathcal{F} \sqcup \mathcal{G}$ la famille obtenue en concaténant \mathcal{F} et \mathcal{G} , qu'on peut, par exemple, formellement définir par $\mathcal{F} \sqcup \mathcal{G} = (w_k)_{k \in K}$ où $K = I \times \{0\} \cup J \times \{1\}$ et $w_k = \begin{cases} u_i \text{ si } k \text{ est de la forme } (i,0) \\ v_j \text{ si } k \text{ est de la forme } (j,1). \end{cases}$

On définit de même la concaténation $\mathcal{F}_1 \sqcup \cdots \sqcup \mathcal{F}_n$ de *n* familles.

Théorème-définition 1: Base adaptée.

Si on a $E = F_1 \oplus F_2 \oplus \cdots \oplus F_n$, où, pour tout i, \mathcal{B}_i est une base de F_i , alors $\mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n$ est une base de E.

Une telle base est appelée base adaptée à la somme directe.

Réciproquement si $\mathcal{F} = \mathcal{F}_1 \sqcup \cdots \sqcup \mathcal{F}_n$ est libre, alors on a $\operatorname{Vect}(\mathcal{F}) = \operatorname{Vect}(\mathcal{F}_1) \oplus \cdots \oplus \operatorname{Vect}(\mathcal{F}_n)$, et \mathcal{F} est une base adaptée à cette somme directe.

DÉMONSTRATION. Je fais pour n=2.

- Supposons avoir E = F₁ ⊕ F₂, avec B₁ une base de F₁ et B₂ une base de F₂. Montrons que B = B₁ ⊔ B₂ est bien une base de E en montrant qu'elle est libre et génératrice.
 D'après le résultat de l'exercice 1 plus haut, on a Vect (B) = Vect (B₁ ∪ B₂) = Vect (B₁) + Vect (B₂) c'est-àdire Vect (B) = F₁ + F₂ = E. D'où le caratère générateur de B.
 Considérons une CL nulle des vecteurs de B = B₁ ⊔ B₂: une telle CL s'écrit sous la forme λ₁u₁ + ··· + λ_pu_p + μ₁v₁ + ··· + μ_qv_q = 0_E, où les u_i sont des vecteurs de B₁ et les v_j des vecteurs de B₂. Posons u = λ₁u₁ + ··· + λ_pu_p et v = μ₁v₁ + ··· + μ_qv_q. On a ainsi u + v = 0_E, et comme B₁ est une base de F₁ on a u ∈ F₁, et comme B₂ est une base de F₂ on a v ∈ F₂. La somme F₁ ⊕ F₂ étant directe, on a donc u = v = 0_E, c'est-à-dire λ₁u₁ + ··· + λ_pu_p = μ₁v₁ + ··· + μ_qv_q = 0_E. Par liberté de B₁ et de B₂, on a donc bien λ₁ = ··· = λ_p = μ₁ = ··· = μ_q = 0.
- Supposons avoir $\mathcal{F} = \mathcal{F}_1 \sqcup \mathcal{F}_2$ libre. Les familles \mathcal{F}_1 et \mathcal{F}_2 sont libres comme sous-familles de \mathcal{F} . Pour $i \in \{1, 2\}$, on a par définition \mathcal{F}_i génératrice de Vect (\mathcal{F}_i) , et par liberté elle en forme bien une base. Alors on a Vect $(\mathcal{F}) = \text{Vect}(\mathcal{F}_1) \oplus \text{Vect}(\mathcal{F}_2)$ et \mathcal{F} est une base adaptée à cette somme directe.

Exemple 8

1.
$$\underbrace{Ox}_{\text{base } e_1} \oplus \underbrace{Oy}_{\text{base } e_2} = \underbrace{\mathbb{R}^2}_{\text{base } e_1 \sqcup e_2 = (e_1, e_2)}$$

D'où la liberté de \mathcal{B} .

$$\mathbb{R}^2 = \operatorname{Vect}\left(\underbrace{e_1}_{Ox = \operatorname{Vect}(e_1)}, \underbrace{e_2}_{Oy = \operatorname{Vect}(e_2)}\right)$$

2.
$$\mathbb{R}[X]$$
 a pour base $(1, X, \dots, X^n \stackrel{:}{:} X^{n+1}, \dots)$
Alors $\mathbb{R}[X] = \underbrace{\mathrm{Vect}(1, X, \dots, X^n)}_{\mathbb{R}_n[X]} \oplus \underbrace{\mathrm{Vect}(X^{n+1}, \dots)}_{X^{n+1}\mathbb{R}[X]}$

et $(1, X, \dots, X^n, X^{n+1}, \dots)$ est une base adaptée à la somme directe.

3.
$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, x + y + z = 0 \right\}_{F_1} \oplus \left\{ \begin{pmatrix} t \\ t \\ t \end{pmatrix}, t \in \mathbb{R} \right\}_{F_3} = \mathbb{R}^3$$

$$- \text{Base de } F_1 : \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right)$$

$$- \text{Base de } f_3 : \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right)$$

Une base de
$$\mathbb{R}^3$$
 adaptée à la somme directe est $\left(\begin{pmatrix}1\\0\\-1\end{pmatrix},\begin{pmatrix}0\\1\\-1\end{pmatrix},\begin{pmatrix}1\\1\\1\end{pmatrix}\right)$

La proposition précédente donne un procédé explicite de construction de sous-espaces supplémentaires : on considère une base de E, on la scinde en deux, et on obtient les bases de deux sous-espaces supplémentaires de E.

Exemple 9 Notons
$$\begin{cases} \mathcal{F}_1 &= (1, X, X^2, \dots, X^{2n}, \dots) \\ \mathcal{F}_2 &= (X, X^3, \dots, X^{2n+1}, \dots) \end{cases}$$

 $\mathcal{F}_1 \sqcup \mathcal{F}_2$ est une base de $\mathbb{R}[X]$.

Donc {polynômes pairs} \oplus {polynômes impairs} $= \mathbb{R}[X].$

$$\mathcal{M}_n(\mathbb{K}) = \text{Vect}(()\underbrace{E_{11}, E_{22}, \dots, E_{nn}}_{E_{ii}}, \underbrace{E_{12}, E_{13}, \dots, E_{n-1,n}}_{E_{ij}, i < j}; \underbrace{E_{21}, E_{31}, \dots, E_{n,n-1}}_{E_{ij}, i > j}$$

On obtient :

$$\mathcal{M}_n(\mathbb{K}) = \text{Vect}(()E_{ii}) \oplus \text{Vect}((E_{ij})_{i < j}) \oplus \text{Vect}((E_{ij})_{i > j})$$

= {diagonales} \oplus {triangulaires supérieures strictes} \oplus {triangulaires inférieures strictes}

10