ESPACES PRÉHILBERTIENS.

Contexte : dans tout le chapitre E désigne un \mathbb{R} -espace vectoriel. À retenir : la formule de projection!

I Produit scalaire

I.1 L'exemple du produit scalaire usuel sur \mathbb{R}^n

Théorème 1. L'application $\langle \cdot, \cdot \cdot \rangle$ est :

0. à valeurs dans \mathbb{R} ;

1. symétrique : $\forall x, y \in \mathbb{R}^n$, $\langle y, x \rangle = \langle x, y \rangle$;

2. bilinéaire : $\begin{cases} \forall x, y, z \in \mathbb{R}^n, \ \forall \lambda, \mu \in \mathbb{R}, \ \langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle \ (\text{linéarité à gauche}) \\ \forall x, y, z \in \mathbb{R}^n, \ \forall \lambda, \mu \in \mathbb{R}, \ \langle x, \lambda y + \mu z \rangle = \lambda \langle x, y \rangle + \mu \langle x, z \rangle \ (\text{linéarité à droite}) ; \end{cases}$ 3. définie-positive : $\begin{cases} \forall x \in \mathbb{R}^n, \ \langle x, x \rangle \geqslant 0 \ (\text{positivité}) \\ \forall x \in \mathbb{R}^n, \ \langle x, x \rangle = 0 \Rightarrow x = 0_E \ (\text{caractère défini}). \end{cases}$

I.2 Définitions

Définition 1: Produit scalaire sur E.

On appelle <u>produit scalaire sur E</u> une **forme bilinéaire symétrique définie positive sur E** c'est-à-dire une application $\Phi: E \times E \to \mathbb{R}$ telle que :

1. Φ est symétrique, i. e. $\forall x, y \in \mathbb{R}^n$, $\Phi(y, x) = \Phi(x, y)$;

- 2. Φ est bilinéaire, i. e. $\begin{cases} \forall x,y,z \in \mathbb{R}^n, \ \forall \lambda,\mu \in \mathbb{R}, \ \Phi(\lambda x + \mu y,z) = \lambda \Phi(x,z) + \mu \Phi(y,z) \ (\text{linéarité à gauche}) \\ \forall x,y,z \in \mathbb{R}^n, \ \forall \lambda,\mu \in \mathbb{R}, \ \Phi(x,\lambda y + \mu z) = \lambda \Phi(x,y) + \mu \Phi(x,z) \ (\text{linéarité à droite}); \end{cases}$
- 3. Φ est définie-positive, i. e. $\begin{cases} \forall x \in \mathbb{R}^n, \ \Phi(x,x) \geqslant 0 \ (\text{positivit\'e}) \\ \forall x \in \mathbb{R}^n, \ \Phi(x,x) = 0 \ \Rightarrow \ x = 0_E \ (\text{caract\`ere d\'efini}). \end{cases}$

Remarque 1

- 1. Le fait que le corps soit \mathbb{R} est donc essentiel pour pouvoir énoncer la positivité.
- 2. Pour montrer la bilinéarité, il est pratique de montrer d'abord la symétrie pour n'avoir que la linéarité d'un seul côté à montrer, comme on l'a fait plus haut pour le produit scalaire usuel sur \mathbb{R}^n .

Notation 1 On utilise souvent l'une des trois notations suivantes pour dénoter un produit scalaire Φ sur E. Étant donnés deux vecteurs x et y de E leur produit scalaire $\Phi(x,y)$ pourra se noter (x|y) ou $\langle x,y\rangle$ ou $x\cdot y$.

Définition 2.

- 1. On appelle espace préhilbertien un \mathbb{R} -espace vectoriel muni d'un produit scalaire (E, Φ) .
- 2. On appelle espace euclidien un espace préhilbertien de dimension finie.

Proposition-Définition 3: Produit scalaire canoniquement associé à une base.

Soit $\mathcal{B} = (\varepsilon_i)_{i \in I}$ une base de E.

On appelle <u>produit scalaire canoniquement associé à \mathcal{B} l'application $\left\{ \left(\sum_{i \in I} x_i \varepsilon_i, \sum_{i \in I} y_i \varepsilon_i \right) \rightarrow \sum_{i \in I} x_i y_i. \right\} \right.$ Le produit scalaire canoniquement associé à \mathcal{B} est bien un produit scalaire!</u>

Remarque 2

Dans la définition précédentes, toutes les sommes sont en fait finies (il n'y a qu'un nombre fini de termes non nuls) même pour I infini, et correspondent aux décompositions dans la base \mathcal{B} , il s'agit juste d'une notation pratique pour éviter les doubles indices.

I.3 Autres exemples

Théorème 2.

Sur $E = \mathcal{C}([a,b],\mathbb{R})$ le produit scalaire intégral $\Phi = (f,g) \mapsto \int_a^b f(t)g(t) \, dt$ est bien un produit scalaire.

Proposition 1: La restriction d'un produit scalaire est un produit scalaire.

Autrement dit si $\Phi: E \times E \to \mathbb{R}$ est un produit scalaire sur E, et F est un sous-espace vectoriel de E, alors $\Phi_{|F \times F}: F \times F \to \mathbb{R}$ est un produit scalaire sur F.

I.4 Normes et distances

Définition 4: Norme euclidienne.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien. On appelle <u>norme euclidienne</u> l'application $N : \begin{cases} E \to \mathbb{R}_+ \\ u \mapsto \sqrt{\langle u, u \rangle}. \end{cases}$

Remarque 3 L'application N est bien définie par positivité du produit scalaire. Notation 2 On utilise souvent

l'une des deux notations suivantes pour dénoter la norme euclidienne de $(E, \langle \cdot, \cdot \cdot \rangle)$.

Étant donné un vecteur x de E sa norme euclidienne N(x) pourra se noter ||x|| ou $||x||_2$.

Théorème 3: Inégalité de Cauchy-Schwarz.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et $\|\cdot\|$ la norme associée. Pour tous $u, v \in E$ on a $|\langle u, v \rangle| \leq \|u\| \|v\|$.

Remarque 4

C'est évident dans \mathbb{R}^2 (ou \mathbb{R}^3) muni du produit scalaire usuel. Une formule et un dessin :

Théorème 4: Cas d'égalité dans Cauchy-Schwarz.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et $\| \cdot \|$ la norme associée.

Pour tous $u, v \in E$ on a $|\langle u, v \rangle| = ||u|| \, ||v||$ ssi u et v sont colinéaires.

Théorème 5: Propriétés d'une norme.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien. La norme euclidienne $N = u \mapsto \sqrt{\langle u, u \rangle}$

est une application $N: E \to \mathbb{R}_+$ qui vérifie :

- 1. l'homogénéité : $\forall u \in E, \ \forall \lambda \in \mathbb{R}, \ N(\lambda u) = |\lambda|N(u)$;
- 2. la séparation : $\forall u \in E, \ N(u) = 0 \ N(u) = 0 \Leftrightarrow u = 0_E;$
- 3. l'inégalité triangulaire : $\forall u, v \in E, \ N(u+v) \leq N(u) + N(v)$.

Théorème 6: Identités de polarisation.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien de norme euclidienne $\|\cdot\|$. Soient u, v dans E. Alors:

1.
$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u\|^2 - \|v\|^2}{2}$$
;

2.
$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$
.

Définition 5: Distance euclidienne.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien de norme euclidienne $\| \cdot \|$.

On appelle <u>distance euclidienne entre A et B</u> le réel positif d(A, B) = ||B - A||.

Théorème 7: Propriétés d'une distance.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien de norme euclidienne $\|\cdot\|$. La distance euclidienne $d = (A, B) \mapsto d(A, B)$

est une application $d: E \times E \to \mathbb{R}_+$ qui vérifie :

- 1. la symétrie : $\forall A, B \in E, d(A, B) = d(B, A)$;
- 2. la séparation : $\forall A, B \in E, \ d(A, B) = 0 \Leftrightarrow A = B$;
- 3. l'inégalité triangulaire : $\forall A, B, C \in E, d(A, C) \leq d(A, B) + d(B, C)$.

II Orthogonalité

II.1 Vecteurs orthogonaux

Définition 6: Vecteur orthogonaux.

Soient $u, v \in E$. On dit que u et v sont orthogonaux lorsqu'on a $\langle u, v \rangle = 0$.

(C'est une relation symétrique par symétrie du produit scalaire.)

Notation 3 On le note $u \perp v$.

Théorème 8 : Pythagore.

Soient $u, v \in E$. Alors on a $u \perp v \Leftrightarrow ||u+v||^2 = ||u||^2 + ||v||^2$.

II.2 Familles orthogonales

Définition 7.

Une famille $(u_i)_{i\in I}$ de vecteurs de E est dire orthogonale lorsqu'on a $\forall i\neq j\in I,\ u_i\perp u_j$.

Théorème 9: Pythagore généralisé.

Soient $n \in \mathbb{N}$ et $u_1, u_2, \dots u_n \in E$. Supposons la famille (u_1, \dots, u_n) orthogonale.

Alors on a $||u_1 + u_2 + \dots + u_n||^2 = ||u_1||^2 + ||u_2||^2 + \dots + ||u_n||^2$.

Théorème 10

Toute famille orthogonale formée de vecteurs non nuls est libre.

Proposition-Définition 8 . Soit $\mathcal{B} = (\varepsilon_i)_{i \in I}$.

- 1. On dit que \mathcal{B} est une base orthogonale lorsque c'est à la fois une famille orthogonale et une base. Cela équivaut à dire que c'est une famille génératrice et orthogonale formée de vecteurs non nuls.
- 2. On dit que \mathcal{B} est une base orthonormée (b.o.n.) lorsque c'est base orthogonale formée de vecteurs de norme 1. Cela équivaut à dire que \mathcal{B} est génératrice et telle que $\forall i, j \in I, \ \langle \varepsilon_i, \varepsilon_j \rangle = \delta_{i,j}$.

II.3 Sous-espaces vectoriels orthogonaux

Définition 9.

Soient F et G deux sevs de E. On dit que F et G sont orthogonaux lorsqu'on a $\forall u \in F, \ \forall v \in G, \ u \perp v$.

Notation 4 On le note $F \perp G$ aussi. Remarque 5

Si F et G sont orthogonaux alors $F \cap G = \{0_E\}$.

II.4 Orthogonal d'une partie ou d'un sev

Définition 10: Orthogonal d'une partie.

Soit $X \subset E$. On appelle orthogonal de X l'ensemble $\{v \in E, \ \forall u \in X, \ v \perp u\}$.

- II.5 Supplémentaire orthogonal
- II.6 Cas d'un espace euclidien
- III Projection orthogonale et applications
- III.1 Formule de projection
- III.2 Algorithme d'orthonormalisation de Gram-Schmidt
- III.3 Magie des b.o.n.
- III.4 Distance à un sous-espace vectoriel