Espaces préhilbertiens.

Contexte : dans tout le chapitre E désigne un \mathbb{R} -espace vectoriel. À retenir : la formule de projection!

I Produit scalaire

I.1 L'exemple du produit scalaire usuel sur \mathbb{R}^n

Exemple 1 On appelle <u>produit scalaire usuel sur \mathbb{R}^n l'application $\langle \cdot, \cdot \rangle : \left\{ \begin{pmatrix} \mathbb{R}^n \times \mathbb{R}^n & \to & \mathbb{R} \\ \begin{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \end{pmatrix} \right\} \mapsto \sum_{i=1}^n x_i y_i.$ </u>

Objectif: axiomatiser la notion de produit scalaire à partir de cet exemple.

Lorsqu'on démontre des propriétés à l'aide du produit scalaire (cf cours de trigonométrie ou Tacmas sur \mathbb{R}^3), quelles propriétés utilise-t-on? Celles du théorème suivant.

Théorème 1. L'application $\langle \cdot, \cdot \rangle$ est :

- 0. à valeurs dans \mathbb{R} ;
- 1. symétrique : $\forall x, y \in \mathbb{R}^n, \langle y, x \rangle = \langle x, y \rangle$;
- 2. bilinéaire : $\left\{ \begin{array}{l} \forall x,y,z \in \mathbb{R}^n, \ \forall \lambda,\mu \in \mathbb{R}, \ \langle \lambda x + \mu y,z \rangle = \lambda \langle x,z \rangle + \mu \langle y,z \rangle \ (\text{linéarité à gauche}) \\ \forall x,y,z \in \mathbb{R}^n, \ \forall \lambda,\mu \in \mathbb{R}, \ \langle x,\lambda y + \mu z \rangle = \lambda \langle x,y \rangle + \mu \langle x,z \rangle \ (\text{linéarité à droite}) \ ; \end{array} \right.$
- 3. définie-positive : $\begin{cases} \forall x \in \mathbb{R}^n, \ \langle x, x \rangle \geqslant 0 \text{ (positivité)} \\ \forall x \in \mathbb{R}^n, \ \langle x, x \rangle = 0 \Rightarrow x = 0_E \text{ (caractère défini)}. \end{cases}$

DÉMONSTRATION. On va constamment dans ce chapitre vérifier les points 1, 2, 3. Voyons ici un exemple de rédaction.

1. Soient $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ deux vecteurs de \mathbb{R}^n . On a :

$$\langle y, x \rangle = \sum_{i=1}^{n} y_i x_i$$
 par définition
 $= \sum_{i=1}^{n} x_i y_i$ par commutativité du produit des réels
 $= \langle x, y \rangle$ par définition

2. Pour la bilinéarité : il suffit de démontrer la linéarité à gauche, car par symétrie on en déduit la linéarité à droite.

Soient $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ et $z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$ trois vecteurs de \mathbb{R}^n , soient λ et μ deux réels. On a :

$$\begin{array}{lll} \langle \lambda x + \mu y, z \rangle & = & \displaystyle \sum_{i=1}^n (\lambda x_i + \mu y_i) z_i & \text{par d\'efinition} \\ \\ & = & \displaystyle \sum_{i=1}^n (\lambda x_i z_i + \mu y_i z_i) & \text{par distributivit\'e de} \times \text{sur} + \\ \\ & = & \displaystyle \lambda \sum_{i=1}^n x_i z_i + \mu \sum_{i=1}^n y_i z_i & \text{par lin\'earit\'e de la somme} \\ \\ & = & \displaystyle \lambda \langle x, z \rangle + \mu \langle y, z \rangle & \text{par d\'efinition} \end{array}$$

3. Positivité : soit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$.

On a : $\langle x, x \rangle = \sum_{i=1}^{n} x_i^2 \ge 0$ car un carré est toujours positif et car les inégalités sont stables par somme.

Caractère défini : soit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ et supposons $\langle x, x \rangle = 0$ i. e. $\sum_{i=1}^n x_i^2 = 0$. Une somme de positifs est nulle si et seulement si tous ses termes sont nuls donc $\forall i \in \{1, \dots, n\}, \ x_i^2 = 0$ i. e. $\forall i \in \{1, \dots, n\}, \ x_i = 0$ i. e. $x = \overrightarrow{0}$.

I.2 Définitions

Définition 1: Produit scalaire sur E.

On appelle <u>produit scalaire sur E une forme bilinéaire symétrique définie positive sur E c'est-à-dire une application $\Phi: E \times E \to \mathbb{R}$ telle que :</u>

- 1. Φ est symétrique, i. e. $\forall x, y \in \mathbb{R}^n$, $\Phi(y, x) = \Phi(x, y)$;
- 2. Φ est bilinéaire, i. e. $\begin{cases} \forall x,y,z \in \mathbb{R}^n, \ \forall \lambda,\mu \in \mathbb{R}, \ \Phi(\lambda x + \mu y,z) = \lambda \Phi(x,z) + \mu \Phi(y,z) \ (\text{linéarité à gauche}) \\ \forall x,y,z \in \mathbb{R}^n, \ \forall \lambda,\mu \in \mathbb{R}, \ \Phi(x,\lambda y + \mu z) = \lambda \Phi(x,y) + \mu \Phi(x,z) \ (\text{linéarité à droite}); \end{cases}$
- 3. Φ est définie-positive, i. e. $\begin{cases} \forall x \in \mathbb{R}^n, \ \Phi(x,x) \geqslant 0 \text{ (positivité)} \\ \forall x \in \mathbb{R}^n, \ \Phi(x,x) = 0 \Rightarrow x = 0_E \text{ (caractère défini)}. \end{cases}$

Le théorème 1 s'énonce donc : « le produit scalaire usuel sur \mathbb{R}^n est un produit scalaire ».

Remarque 1

- 1. Le fait que le corps soit \mathbb{R} est donc essentiel pour pouvoir énoncer la positivité.
- 2. Pour montrer la bilinéarité, il est pratique de montrer d'abord la symétrie pour n'avoir que la linéarité d'un seul côté à montrer, comme on l'a fait plus haut pour le produit scalaire usuel sur \mathbb{R}^n .

Notation 1 On utilise souvent l'une des trois notations suivantes pour dénoter un produit scalaire Φ sur E. Étant donnés deux vecteurs x et y de E leur produit scalaire $\Phi(x,y)$ pourra se noter (x|y) ou $\langle x,y\rangle$ ou $x\cdot y$.

Définition 2.

- 1. On appelle espace préhilbertien un \mathbb{R} -espace vectoriel muni d'un produit scalaire (E, Φ) .
- 2. On appelle espace euclidien un espace préhilbertien de dimension finie.

On peut essayer de copier-coller plus directement la définition du produit scalaire usuel de \mathbb{R}^n :

Proposition-Définition 3: Produit scalaire canoniquement associé à une base.

Soit $\mathcal{B} = (\varepsilon_i)_{i \in I}$ une base de E.

On appelle produit scalaire canoniquement associé à \mathcal{B} l'application $\left\{ \begin{array}{c} E \times E & \to & \mathbb{R} \\ \left(\sum_{i \in I} x_i \varepsilon_i, \sum_{i \in I} y_i \varepsilon_i \right) & \mapsto & \sum_{i \in I} x_i y_i. \end{array} \right.$

Le produit scalaire canoniquement associé à $\mathcal B$ est bien un produit scalaire!

Remarque 2

Dans la définition précédentes, toutes les sommes sont en fait finies (il n'y a qu'un nombre fini de termes non nuls) même pour I infini, et correspondent aux décompositions dans la base \mathcal{B} , il s'agit juste d'une notation pratique pour éviter les doubles indices.

DÉMONSTRATION. La même que pour le produit scalaire usuel de \mathbb{R}^n , qui est le produit scalaire canoniquement associé à la base canonique de \mathbb{R}^n .

I.3 Autres exemples

Exemple 2 Sur $E = \mathcal{C}([a, b], \mathbb{R})$, où $a < b \in \mathbb{R}$, on peut considérer le <u>produit scalaire intégral</u> $\Phi = (f, g) \mapsto \int_a^b f(t)g(t) dt$.

Théorème 2.

Sur $E = \mathcal{C}([a,b],\mathbb{R})$ le produit scalaire intégral $\Phi = (f,g) \mapsto \int_a^b f(t)g(t) \ \mathrm{d}t$ est bien un produit scalaire.

DÉMONSTRATION.

Exemples 3 Deux variantes du théorème précédent :

- 1. Sur $E = \mathcal{C}_T(\mathbb{R}, \mathbb{R})$ (ensemble des fonctions T-périodiques et continues de \mathbb{R} dans \mathbb{R}) et pour $a \in \mathbb{R}$ quelconque, l'application $\Phi = (f, g) \mapsto \int_a^{a+T} f(t)g(t) \, dt$ est un produit scalaire.
- 2. Sur $E = \mathbb{R}[X]$ et pour $a < b \in \mathbb{R}$, l'application $\Phi = (P, Q) \mapsto \int_a^b P(t)Q(t) dt$ est un produit scalaire.

DÉMONSTRATION. On recopie la démonstration précédente mais il faut ajuster la fin de la preuve de ______.

Exemple 4 Sur $E = \mathcal{M}_{p,q}(\mathbb{R})$, l'application $\Phi = (A, B) \mapsto \operatorname{Tr}({}^t AB)$ est un produit scalaire.

DÉMONSTRATION. Deux méthodes :

Exemple 5 Pour $E = \mathbb{K}_n(\mathbb{R})$, et $\alpha_0 < \alpha_1 < \ldots < \alpha_n \in \mathbb{R}$, l'application $\Phi = (P, Q) \mapsto \sum_{i=0}^n P(\alpha_i)Q(\alpha_i)$ est un produit scalaire.

DÉMONSTRATION. Attention on a peu de place :

$$| P = \begin{pmatrix} P(\alpha_0) \\ P(\alpha_1) \\ \vdots \\ P(\alpha_n) \end{pmatrix}$$

C'est le produit scalaire canoniqument associé à la base de Lagrange

Proposition 1: La restriction d'un produit scalaire est un produit scalaire.

Autrement dit si $\Phi: E \times E \to \mathbb{R}$ est un produit scalaire sur E, et F est un sous-espace vectoriel de E, alors $\Phi_{|F \times F}: F \times F \to \mathbb{R}$ est un produit scalaire sur F.

Démonstration. La définition d'un produit scalaire ne comporte que des quantifications universelles sur E!

Exemple 6 Sur $E = \mathbb{R}_n[X]$ et pour $a < b \in \mathbb{R}$, l'application $\Phi = (P, Q) \mapsto \int_a^b P(t)Q(t) dt$ est un produit scalaire.

I.4 Normes et distances

Définition 4: Norme euclidienne.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien. On appelle <u>norme euclidienne</u> l'application $N: \left\{ \begin{array}{ccc} E & \to & \mathbb{R}_+ \\ u & \mapsto & \sqrt{\langle u, u \rangle}. \end{array} \right.$

Remarque 3 L'application N est bien définie par positivité du produit scalaire.

Notation 2 On utilise souvent l'une des deux notations suivantes pour dénoter la norme euclidienne de $(E, \langle \cdot, \cdot \rangle)$. Étant donné un vecteur x de E sa norme euclidienne N(x) pourra se noter ||x|| ou $||x||_2$.

Exemples 7

1. Dans \mathbb{R}^n muni du produit scalaire usuel, la norme euclidienne est la norme usuelle.

Par exemple pour
$$n=3$$
 on a $\left\| \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \right\| = \sqrt{\left\langle \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \right\rangle} = \sqrt{6}$.

2. Dans $C_{2\pi}(\mathbb{R}, \mathbb{R})$ muni du produit scalaire intégral, on a $\|\cos\| = \sqrt{\pi}$ car : On prend le produit scalaire intéral, et l'intégrale d'une T-périodique sur [a, a+T] ne dépend pas de a. On choist $a = -\pi$

$$\|\cos\| = \sqrt{\langle \cos, \cos \rangle}$$

$$= \sqrt{\int_{-\pi}^{\pi} \cos^2}$$

$$= \sqrt{\int_{-\pi}^{\pi} \frac{1 + \cos(2t)}{2} dt}$$

$$= \sqrt{\left[\frac{t}{2} + \frac{\sin(2t)}{4}\right]_{t=-\pi}^{\pi}}$$

$$= \sqrt{\frac{\pi}{2} + \frac{\pi}{2}}$$

$$= \sqrt{\pi}$$

Théorème 3: Inégalité de Cauchy-Schwarz.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et $\|\cdot\|$ la norme associée. Pour tous $u, v \in E$ on a $|\langle u, v \rangle| \leq \|u\| \|v\|$.

Remarque 4

C'est évident dans \mathbb{R}^2 (ou \mathbb{R}^3) muni du produit scalaire usuel. Une formule et un dessin :

DÉMONSTRATION. On récite CCINP76 en regardant où est-ce qu'on a quelque chose à adapter.

1er cas $(u = 0_E)$ ok.

2e cas $(u \neq 0_E)$

$$\begin{split} P(\lambda) &:= \left\| \lambda u + v \right\|^2 \geq 0 \\ &= \left\langle \lambda u + v, \lambda u + v > \right. \\ &= \lambda^2 \langle u, u \rangle + \lambda \langle u, v \rangle + \lambda \langle v, u \rangle + \langle v, v \rangle \qquad \text{par bilinéarité} \\ &= \left\| u \right\|^2 \lambda^2 + 2 \langle u, v \rangle \lambda + \left\| v \right\|^2 \qquad \text{par symétrie} \\ \Leftrightarrow \left\| u \right\|^2 &= \langle u, u \rangle \neq 0 \qquad \text{car } u \neq 0_E \text{ (définie-positivité)} \end{split}$$

Donc deg $P(\lambda) = 2$ et le signe de P ne change pas donc son discriminant Δ est négatif.

$$\begin{split} \Delta &= (2\langle u,v\rangle)^2 - R\|u\|^2\|v\|^2 \\ &= 4\langle u,v\rangle^2 - R\|u\|^2\|v\|^2 \\ \Delta &\leq 0 \Leftrightarrow 4\langle u,v\rangle^2 \leq 4\|u\|^2\|v\|^2 \\ \Leftrightarrow \langle u,v\rangle^2 \leq \|u\|^2\|v\|^2 \\ \Leftrightarrow |\langle u,v\rangle| &= \sqrt{\langle u,v\rangle^2} \leq \|u\|\|v\| \end{split} \qquad \text{par croissance de } \sqrt{} \end{split}$$

Théorème 4: Cas d'égalité dans Cauchy-Schwarz.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et $\| \cdot \|$ la norme associée.

Pour tous $u, v \in E$ on a $|\langle u, v \rangle| = ||u|| \, ||v||$ ssi u et v sont colinéaires.

DÉMONSTRATION. 1er cas $(u = 0_E)$ ok.

2e cas $(u \neq 0_E)$

Le cas d'égalité est obtenu pour $\Delta = 0$

- i. e. dans le cas où $P(\lambda)$ a une racine λ_0
- i. e. lorsqu'il existe $\lambda_0 \in \mathbb{R}$ tel que $\|\lambda_0 u + v\|^2$
- i.~e.lorsqu'il existe $\lambda_0 \in \mathbb{R}$ tel que $\lambda_0 u + v = 0_E$ par définie-posivité
- i. e. lorsque u//v car $v \neq 0_E$

Application 1

- Les CCINP 76 et 79 sont essentiellement des applications de Cauchy-Schwarz pour le produit scalaire intégral.
- On peut aussi traiter sur le même modèle l'exercice 4-D de la feuille sur le nombres réels.

Application 2 Montrons qu'on a $\forall M \in \mathcal{M}_n(\mathbb{R}), \operatorname{Tr}(M)^2 \leqslant n \operatorname{Tr}({}^tMM).$ On se place dans $(\mathcal{M}_n(\mathbb{R}), \operatorname{Tr}({}^t \cdot \cdot \cdot))$ D'après cauchy-schwarz :

 $|\operatorname{Tr}({}^{t}AB)| \leq \sqrt{\operatorname{Tr}({}^{t}AA)\operatorname{Tr}({}^{t}BB)}$ $\Leftrightarrow \operatorname{Tr}({}^{t}AB)^{2} \leq \operatorname{Tr}({}^{t}AA)\operatorname{Tr}({}^{t}BB)$ $\Leftrightarrow \operatorname{Tr}(M)^{2} \leq n\operatorname{Tr}({}^{t}MM)$ pour $\begin{cases} A = I_{n} \\ B = M \end{cases}$

Application 3 On peut "définir des angles" dans n'importe quel espace préhilbertien $(E, \langle \cdot, \cdot \rangle)$.

Précisément, étant donnés deux vecteurs non nuls u et v de E, on peut définir <u>la mesure de l'angle non orienté $\widehat{(u,v)}$ </u> comme étant le nombre $\arccos\left(\frac{\langle u,v\rangle}{\|u\|\cdot\|v\|}\right)\in[0,\pi]$.

Théorème 5: Propriétés d'une norme.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien. La norme euclidienne $N = u \mapsto \sqrt{\langle u, u \rangle}$

est une application $N:E \to \mathbb{R}_+$ qui vérifie :

- 1. l'homogénéité : $\forall u \in E, \ \forall \lambda \in \mathbb{R}, \ N(\lambda u) = |\lambda|N(u)$;
- 2. la séparation : $\forall u \in E, \ N(u) = 0 \ N(u) = 0 \Leftrightarrow u = 0_E$;
- 3. l'inégalité triangulaire : $\forall u, v \in E, \ N(u+v) \leq N(u) + N(v)$.

En fait lorsque ces propriétés sont vérifiées on dit que l'application N est <u>une norme</u>, et il existe d'autres normes que les normes euclidiennes, mais elles sont seulement au programme de seconde année.

DÉMONSTRATION.

$$N(u) = 0$$

$$\Leftrightarrow \sqrt{\langle u, u \rangle} = 0$$

$$\Leftrightarrow \langle u, u \rangle = 0$$

$$u = 0$$

par définie-positivité

Soit $u, v \in E$

Théorème 6: Identités de polarisation.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien de norme euclidienne $\|\cdot\|$. Soient u, v dans E. Alors :

1.
$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u\|^2 - \|v\|^2}{2}$$
;

$$2. \ \langle u,v \rangle = \frac{\|u+v\|^2 - \|u-v\|^2}{4}.$$

DÉMONSTRATION.

$$\frac{\langle u+v,u+v\rangle-\langle u,u\rangle-\langle v,v\rangle}{2}=\frac{\langle u,u\rangle+2\langle u,v\rangle+\langle v,v\rangle-\langle u,u\rangle-\langle v,v\rangle}{2} \qquad \text{par bilinéarité et symétrie}$$

$$=\langle u,v\rangle$$

$$\frac{\langle u+v,u+v\rangle-\langle u-v,u-v\rangle}{4}=\frac{\langle u,u\rangle+2\langle u,v\rangle+\langle v,v\rangle-(\langle u,u\rangle-2\langle v,u\rangle+\langle v,v\rangle)}{4}$$

Ce théorème indique donc qu'on peut reconstituer le produit scalaire à partir de la norme euclidienne.

Définition 5: Distance euclidienne.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien de norme euclidienne $\| \cdot \|$.

On appelle <u>distance euclidienne entre A et B</u> le réel positif d(A, B) = ||B - A||.

Théorème 7: Propriétés d'une distance.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien de norme euclidienne $\| \cdot \|$. La distance euclidienne $d = (A, B) \mapsto d(A, B)$ est une application $d : E \times E \to \mathbb{R}_+$ qui vérifie :

- 1. la symétrie : $\forall A, B \in E, d(A, B) = d(B, A)$;
- 2. la séparation : $\forall A, B \in E, \ d(A, B) = 0 \Leftrightarrow A = B$;
- 3. l'inégalité triangulaire : $\forall A, B, C \in E, d(A, C) \leq d(A, B) + d(B, C)$.

DÉMONSTRATION. C'est une traduction quasi-immédiate des propriétés des normes. Exercice, si tu y tiens.

Exemple 8 Dans $C_{2\pi}(\mathbb{R},\mathbb{R})$ muni du produit scalaire intégral, on a $d(\cos,\sin)=$ car :

$$d(\cos, \sin) = \|\cos - \sin\| = \|\sin - \cos\|$$

$$= \sqrt{\langle\cos - \sin, \cos - \sin\rangle}$$

$$= \sqrt{\int_{-\pi}^{\pi} (\cos - \sin)^2}$$

$$= \sqrt{\int_{-\pi}^{\pi} \left(\sqrt{2} \left(\frac{\sqrt{2}}{2} \cos t - \frac{\sqrt{2}}{2} \sin t\right)\right)^2} dt$$

$$= \sqrt{\int_{-\pi}^{\pi} 2 \cos^2(t + \frac{\pi}{4} dt)}$$

$$= \sqrt{\int_{\pi}^{\pi} 1 + \cos(2t + \frac{\pi}{2}) dt}$$

$$= \sqrt{\int_{\pi}^{\pi} 1 - \sin 2t dt}$$

$$= \sqrt{\left[t + \frac{\cos 2t}{2}\right]_{t = -\pi}^{\pi}}$$

$$= \sqrt{2\pi}$$

II Orthogonalité

Dans toute cette section, $(E, \langle \cdot, \cdot \rangle)$ désigne un espace préhilbertien et $\| \cdot \|$ la norme euclidienne associée.

II.1 Vecteurs orthogonaux

Définition 6: Vecteur orthogonaux.

Soient $u, v \in E$. On dit que u et v sont orthogonaux lorsqu'on a $\langle u, v \rangle = 0$.

(C'est une relation symétrique par symétrie du produit scalaire.)

Notation 3 On le note $u \perp v$.

Exemple 9 Dans $C_{2\pi}(\mathbb{R},\mathbb{R})$ muni du produit scalaire intégral, on a $\cos \perp \sin \operatorname{car}$:

$$\langle \cos, \sin \rangle = \int_{\pi}^{\pi} \cos \cdot \sin$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} 2 \cos \cdot \sin$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} \sin(2t) dt$$

$$= \frac{1}{4} \left[-\cos(2t) \right]_{t=-\pi}^{\pi}$$

Exemple 10 Dans \mathbb{R}^2 muni du produit scalaire usuel, on sait bien (?) qu'un vecteur orthogonal à $\binom{a}{b}$ est

Théorème 8: Pythagore.

Soient $u, v \in E$. Alors on a $u \perp v \Leftrightarrow ||u + v||^2 = ||u||^2 + ||v||^2$.

DÉMONSTRATION.

$$u \perp v \Leftrightarrow \langle u, v \rangle = 0$$

$$\Leftrightarrow 2\langle u, v \rangle = 0$$

$$\Leftrightarrow ||u||^2 + 2\langle u, v \rangle + ||v||^2 = ||u||^2 + ||v||^2$$

$$\Leftrightarrow ||u + v||^2 = ||u||^2 + ||v||^2$$

par bilinéarité et symétrie

Exemple 11 Dans $C_{2\pi}(\mathbb{R},\mathbb{R})$ muni du produit scalaire intégral, retrouvons $d(\cos,\sin)$.

$$d(\cos, \sin) = \|\underbrace{\cos + (-\sin)}_{\perp}\|^2$$

$$= \|\cos\|^2 + \|\sin\|^2$$

$$\|\cos\|^2 = \int_{-\pi}^{\pi} \cos^2$$

$$= \int_{-\pi}^{\pi} \frac{1 + \cos(2t)}{2} dt$$

$$= \left[\frac{t}{2} + \frac{\sin(2t)}{4}\right]_{-\pi}^{\pi}$$

$$= \pi$$

$$\|\sin\|^2 = \dots = \pi$$

Donc

$$d(\cos, \sin)^2 = 2\pi$$
$$d(\cos, \sin) = \sqrt{2\pi}$$

II.2 Familles orthogonales

Définition 7.

Une famille $(u_i)_{i\in I}$ de vecteurs de E est dire orthogonale lorsqu'on a $\forall i\neq j\in I,\ u_i\perp u_j$.

Exemple 12 Dans $C_{2\pi}(\mathbb{R}, \mathbb{R})$ muni du produit scalaire intégral, la famille $\left(\cos(kt)\right)_{k\in\mathbb{N}}$ est orthogonale. $u_k := (t \mapsto \cos(kt))_{k\in\mathbb{N}})$ est orthogonale Soit $i \neq j \in \mathbb{N}$.

$$\begin{split} \langle t \mapsto \cos(it), t \mapsto \cos(jt) \rangle &= \int_{-\pi}^{\pi} \cos(it) \cdot \cos(jt) \, \mathrm{d}t \\ &= \frac{1}{2} \int_{-\pi}^{\pi} \cos((i+j)t) + \cos((i-j)t) \, \mathrm{d}t \\ &= \frac{1}{2} \left[\frac{\sin((i+j)t)}{i+j} + \frac{\sin((i-j)t)}{i-j} \right]_{t=-\pi}^{\pi} \end{split} \qquad \text{car } i \pm j = 0 \end{split}$$

Théorème 9: Pythagore généralisé.

Soient $n \in \mathbb{N}$ et $u_1, u_2, \dots u_n \in E$. Supposons la famille (u_1, \dots, u_n) orthogonale.

Alors on a
$$||u_1 + u_2 + \dots + u_n||^2 = ||u_1||^2 + ||u_2||^2 + \dots + ||u_n||^2$$
.

Attention, c'est seulement une implication, contrairement à Pythagore qui est une équivalence.

DÉMONSTRATION. Supposons $(u_1, \ldots, u_n) \perp$

$$\begin{split} \left\| \sum_{i=1}^n u_i \right\|^2 &= \left\langle \sum_{i=1}^n u_i, \sum_{j=1}^n u_j \right\rangle \\ &= \sum_{i=1}^n \sum_{j=1}^n \langle u_i, u_j \rangle \\ &= \sum_{i=1}^n \|u_i\|^2 \end{split} \quad \text{par bilinéarité}$$

Application 4 Calculons $\int_{-\pi}^{\pi} \left(\sum_{k=1}^{n} \cos(kt) \right)^{2} dt$. $(\cos \circ (kid))_{k \in \mathbb{N}}$ est orthogonale donc

$$\int_{-\pi}^{\pi} \left(\sum_{k=1}^{n} \cos(kt) \right)^{2} = \sum_{k=1}^{n} \int_{-\pi}^{\pi} \cos(kt)^{2}$$

$$= \sum_{k=1}^{n} \frac{1}{k} \int_{-k\pi}^{k\pi} \cos(u)^{2} du$$

$$= \sum_{k=1}^{n} \frac{1}{k} \left[\frac{1}{2} \frac{1}{2} (u + \sin u + \cos u) \right]_{-k\pi}^{\pi}$$

$$= \sum_{k=1}^{n} \frac{1}{2k} (k\pi + k\pi)$$

$$= \sum_{k=1}^{n} \pi$$

$$= n\pi$$

Théorème 10.

Toute famille orthogonale formée de vecteurs non nuls est libre.

DÉMONSTRATION. Considérons une CL nulle $\alpha_1 u_{i_1} + \alpha_2 u_{i_2} + \cdots + \alpha_n u_{i_n} = 0_E$ des vecteurs d'une famille $\bot (u_i)_{i \in I}$. Soit $k \in [\![1,n]\!]$ On a

$$\begin{split} \langle \alpha_1 u_{i_1} + \alpha_2 u_{i_2} + \dots + \alpha_k u_{i_k} + \dots + \alpha_n u_{i_n}, u_{i_k} \rangle &= \langle 0_E, u_{i_k} \rangle = 0_E \\ &= \alpha_1 \left\langle u_{i_1}, u_{i_k} \right\rangle + \dots + \alpha_k \left\langle u_{i_k}, u_{i_k} \right\rangle + \dots + \alpha_n \left\langle u_{i_n}, u_{i_k} \right\rangle & \text{par bilin\'earit\'e} \\ &= 0 + \alpha_k \left\langle u_{i_k}, u_{i_k} \right\rangle + 0 \\ &\text{donc } \alpha_k \underbrace{ \left\| u_{i_k} \right\|^2}_{\neq \ 0 \ \text{par d\'efinie positivit\'e}} & = 0 \end{split}$$

Ceci est vrai pour tout $k \in [1, n]$ donc la CL est triviale

Application 5 On retrouve que la famille $\left(\cos(kt)\right)_{k\in\mathbb{N}}$ est libre!

Proposition-Définition 8 . Soit $\mathcal{B} = (\varepsilon_i)_{i \in I}$.

- 1. On dit que \mathcal{B} est une base orthogonale lorsque c'est à la fois une famille orthogonale et une base. Cela équivaut à dire que c'est une famille génératrice et orthogonale formée de vecteurs non nuls.
- 2. On dit que \mathcal{B} est une base orthonormée (b.o.n.) lorsque c'est base orthogonale formée de vecteurs de norme 1. Cela équivaut à dire que \mathcal{B} est génératrice et telle que $\forall i, j \in I, \ \langle \varepsilon_i, \varepsilon_j \rangle = \delta_{i,j}$.

DÉMONSTRATION. 1. base = libre + générateur et on utilise le théorème 10 (II.2)

2.
$$\delta_{ij} = \begin{cases} 0 & \text{si } i = j \\ 1 & \text{si } i \neq j \end{cases}$$

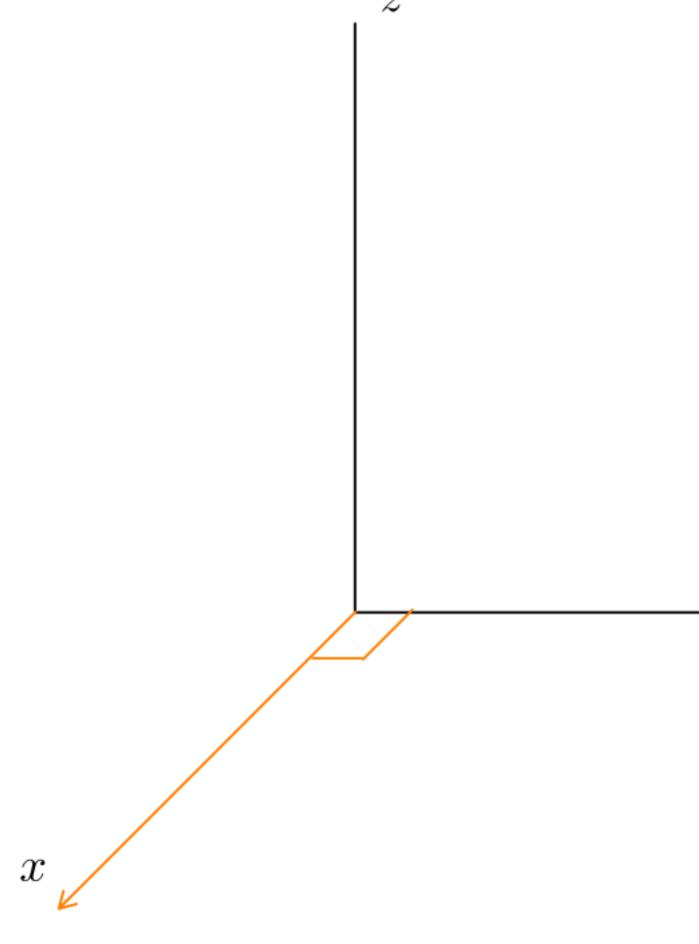
II.3 Sous-espaces vectoriels orthogonaux

Définition 9.

Soient F et G deux sevs de E. On dit que F et G sont orthogonaux lorsqu'on a $\forall u \in F, \ \forall v \in G, \ u \perp v$.

Notation 4 On le note $F \perp G$ aussi.

Exemples 13 Dans \mathbb{R}^3 muni de produit scalaire usuel.



2.
$$\begin{cases} F &= \text{Vect } (e_1) \\ G &= (Oyz) = \text{Vect } (e_2, e_3) \\ F &\perp G \end{cases}$$

Exemples 14 Dans $\mathcal{M}_n(\mathbb{R})$ muni de produit scalaire $\langle A, B \rangle = Tr({}^tAB)$, les sevs $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont orthogonaux.

Soit
$$\begin{cases} A \in \mathcal{A}_n(\mathbb{R}) \\ S \in \mathcal{S}_n(\mathbb{R}) \end{cases}$$

$$\langle A, S \rangle = \operatorname{Tr}({}^t AS)$$

$$= \operatorname{Tr}(-AS)$$

$$= -\operatorname{Tr}(AS)$$

$$= -\operatorname{Tr}(SA)$$

$$= -\operatorname{Tr}({}^t SA)$$

$$= -\langle S, A \rangle$$

$$= -\langle A, S \rangle$$

$$\Longrightarrow \langle A, S \rangle = 0$$

par symétrie

Remarque 5

Si F et G sont orthogonaux alors $F \cap G = \{0_E\}$.

DÉMONSTRATION. Supposons $F \perp G$

 $\supset | ok (c'est un sev) |$

 \subset

Soit $x \in F \cap G$ On a $F \perp G$ ie $\forall u \in F, \forall v \in G, \langle u, v \rangle = 0$

Pour u = v = x on trouve $\langle x, x \rangle = 0$ donc $x = 0_E$ par définie-positivité.

Application 6 On retrouve qu'on a $\mathcal{A}_n(\mathbb{R}) \oplus \mathcal{S}_n(\mathbb{R})$.

$$\operatorname{donc} \quad A_n(\mathbb{R}) \perp S_n(\mathbb{R})$$

$$\operatorname{donc} \quad A_n(\mathbb{R}) \cap S_n(\mathbb{R}) = \{(0)\}$$
or
$$\underbrace{\operatorname{dim} A_n(\mathbb{R})}_{\frac{n(n-1)}{2}} + \underbrace{\operatorname{dim} S_n(\mathbb{R})}_{\frac{n(n+1)}{2}} = n^2$$

Par caractérisation des supplémentaires en dimension finie

$$\mathcal{A}_n(\mathbb{R}) \oplus \mathcal{S}_n(\mathbb{R}) = \mathcal{M}_n(\mathbb{R})$$

On généralise cet exemple dans les sous-sections suivantes.

Orthogonal d'une partie ou d'un sev

Définition 10: Orthogonal d'une partie.

Soit $X \subset E$. On appelle orthogonal de X l'ensemble $\{v \in E, \forall u \in X, v \perp u\}$.

Notation 5 On le note X^{\perp}

Exemple 15 Prenons l'exemple, dans \mathbb{R}^3 muni du ps usuel, où X est un singleton.

Soit
$$X = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\}$$

$$X^{\perp} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \forall u \in X, \left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, u \right\rangle = 0 \right\}$$
$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\rangle = 0 \right\}$$
$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, ax + by + cz = 0 \right\}$$

Proposition 2.

Soit $X \subset E$. On a :

- 1. $\operatorname{Vect}(X)^{\perp} = X^{\perp}$.
- 2. X^{\perp} est un sev.

DÉMONSTRATION. 1. \bigcirc Supposons $v \in \text{Vect}(X)^{\perp}$ Ainsi $\forall u \in \text{Vect}(X), v \perp u$ Or $X \subset \text{Vect}(X)$ donc en particulier

$$\forall u \in X. v \perp u \text{ ie } v \in X^{\perp}$$

Montrons $v \in \text{Vect}(X)^{\perp}$ i. e. $\forall u \in \text{Vect}(X), v \perp u$

Soit $u \in \text{Vect}(X)$

Ainsi u peut s'écrire sous la forme

$$u = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n$$

où
$$\begin{cases} \lambda_i & \in \mathbb{R} \\ x_i & \in X \end{cases}$$

Donc

$$\langle u, v \rangle = \lambda_1 \underbrace{\langle x_1, v_1 \rangle}_0 + \dots + \lambda_n \underbrace{\langle x_n, v_n \rangle}_0$$
 par bilinéarité
$$= 0$$
 donc $u \perp v$

2. Montrons que X^{\perp} est un sev

Méth 1

$$X^{\perp} = \{ v \in R, \forall x \in X, \langle v, u \rangle = 0 \}$$

$$= \bigcap_{x \in X} \{ v \in E, \langle u, x \rangle = 0 \}$$

$$= \bigcap_{x \in X} \underbrace{\operatorname{Ker}(v \mapsto \langle v, x \rangle}_{AL} \underbrace{\sum_{sev}}_{sev}$$

Méth 2 Avec la définition

 $\textbf{Bilan: l'opération intéressante est} \ \cdot^{\perp} : \left\{ \begin{array}{ccc} \{\text{sevs de } E\} & \to & \{\text{sevs de } E\} \\ F & \mapsto & F^{\perp}. \end{array} \right.$

Proposition 3.

Soient F, G deux sevs de E. Alors :

- 1. $F \perp G \Leftrightarrow F \subset G^{\perp} \Leftrightarrow G \subset F^{\perp}$;
- 2. F^{\perp} est le plus grand sev orthogonal à F (pour l'inclusion évidemment).

DÉMONSTRATION. Exercice.

Exemples 16

- 1. Ôn peut reprendre l'exemple dans \mathbb{R}^3 de $F = (Ox) = \text{Vect } (e_1)$. On observe qu'on a $F^{\perp} = (Oyz) = \text{Vect } (e_2, e_3), (F^{\perp})^{\perp} = F$ et $F \oplus F^{\perp} = E$.
- 2. On peut reprendre l'exemple dans $\mathcal{M}_n(\mathbb{R})$ de $F = \mathcal{A}_n(\mathbb{R})$. On observe qu'on a $F^{\perp} = \mathcal{S}_n(\mathbb{R})$, et de nouveau $(F^{\perp})^{\perp} = F$ et $F \oplus F^{\perp} = E$.

Est-ce que ça marche tout le temps? Non.

3. On se place dans $\mathbb{R}[X]$ muni du produit scalaire canoniquement associé à la base canonique. On note $F = \text{Vect}(X - 1, X^2 - 1, \dots, X^n - 1, \dots)$. Calculons F^{\perp} .

4. CCINP 39 question 3!

On montre dans la suite qu'une condition suffisante pour que « ça marche » est que F soit de dimension finie.

Plaçons-nous dans $\mathbb{R}[X]$ muni de

$$\langle a_0 + a_1 X + \dots + a_n X^n, b_0 + \dots + b_n X^n \rangle = \sum_{k=0}^n a_i b_i$$

$$F = \operatorname{Vect} \left(X - 1, X^2 - 1, \dots, X^n - 1, \dots \right)$$

$$= \left\{ \sum_{k=1}^n \alpha_k (X^k - 1), \begin{cases} n \in \mathbb{N} \\ \alpha_i \in \mathbb{R} \end{cases} \right\}$$

$$= \left\{ (-\alpha_1 - \alpha_2 - \dots - \alpha_n) + \alpha_1 X + \dots + \alpha_n X^n, \begin{cases} n \in \mathbb{N} \\ \alpha_i \in \mathbb{R} \end{cases} \right\}$$

$$F^{\perp} = \left\{ P \in \mathbb{K}[X], \forall Q \in F, \langle P, Q \rangle = 0 \right\}$$

$$= \left\{ \sum_{k=0}^n a_k X^k, \forall Q \in F, \langle P, Q \rangle = 0 \right\}$$

$$= \left\{ \sum_{k=0}^n a_k X^k, \forall \alpha_1, \dots, \alpha_n, \sum_{k=1}^n a_k \alpha_k = a_0(\alpha_1 + \dots + \alpha_n) \right\}$$

$$= \left\{ \sum_{k=0}^n a_k X^k, \forall \alpha_1, \dots, \alpha_n, \sum_{k=1}^n a_k \alpha_k = \sum_{k=1}^n a_0 \alpha_k \right\}$$

Utilisons la base de F

Si
$$P \in F^{\perp}$$
 alors
$$\begin{cases} P & \bot X - 1 \\ P & \bot X^2 - 1 \\ & \vdots \\ P & \bot X^n - 1 \end{cases}$$

$$P = a_0 + \dots + a_n X^n$$

$$P \bot X - 1 \Leftrightarrow -a_0 + a_1 = O \Leftrightarrow a_1 = a_0$$

$$P \bot X^2 - 1 \Leftrightarrow -a_0 + a_2 = O \Leftrightarrow a_2 = a_0$$

$$\vdots P \bot X^n - 1 \qquad \Leftrightarrow -a_0 + a_n = O \Leftrightarrow a_n = a_0$$

$$P \bot X^{n+1} - 1 \Leftrightarrow -a_0 = 0 \Leftrightarrow a_0 = 0$$

 $\mathrm{Donc}:$

$$P = 0$$

Donc $P^{\perp} = \{0\}$

$$\begin{cases} F \oplus F^{\perp} &= F \neq E \\ (F^{\perp})^{\perp} &= \{0_E\}^{\perp} = E \neq F \end{cases}$$

II.5 Supplémentaire orthogonal

Définition 11: Supplémentaire orthogonal.

Soit F un sev de E. On dit que F a un supplémentaire orthogonal lorsqu'on a $F \oplus F^{\perp} = E$.

Remarquons que la somme est quoi qu'il arrive directe, mais on a vu précédemment qu'elle est parfois strictement incluse dans E. On va montrer dans cette sous-section que si F est de dimension finie, alors F a bien un supplémentaire orthogonal (on va aussi montrer plein d'autres jolies choses au passage).

À noter : il suffit que F soit de dimension finie, l'espace ambiant E peut lui être de dimension infinie.

Lemme 1 : Supplémentaire d'une droite.

Soit D une droite de E. Alors D^{\perp} est un hyperplan.

DÉMONSTRATION. Notons D = Vect(u) avec $u \neq 0_E$

$$D^{\perp} = \text{Vect}(u)^{\perp}$$

$$= \{u\}^{\perp}$$

$$= \{v \in E, \langle v, u \rangle = 0_E\}$$

$$= \text{Ker}(\qquad v \mapsto \langle v, u \rangle \qquad)$$

C'est le noyau d'une forme linéaire non nulle donc un hyperplan .

Un hyperplan et une droite sont toujours supplémentaires quand la droite n'est pas incluse dans l'hyperplan (exercice d'algèbre linéaire déjà vu). Les droites ont donc un supplémentaire orthogonal, ça part bien.

Théorème 11: Existence de bases orthonormées.

Soit F un sev de E de dimension finie. Alors F a une base orthonormée.

DÉMONSTRATION. On rappelle que la restriction à F du produit scalaire de E est un produit scalaire (proposition 1). Dans toute la démonstration, on se place dans l'espace euclidien $(F, \langle \cdot, \cdot \rangle)$. Cela signifie en particulier que les espaces orthogonaux considérés sont pris dans F. Montrons le résultat par récurrence, i. e. montrons que pour tout entier $n \in \mathbb{N}$, pour tout sev F de E de dimension E0, E1 aune base orthonormée.

<u>Initialisation</u>: Pour n = 0 soit F un sev de dimension 0. Alors $F = \{0_E\}$ donc F a bien une b.o.n. : \emptyset .

Hérédité : Soit $n \in \mathbb{N}$ et supposons que tout sev de E de dimension n a une base orthonormée.

Soit F un sev de E de dimension n+1.

En particulier il existe un vecteur non nul $u \in F$ et D = Vect(u) est une droite de F.

D'après le lemme, l'orthogonal O de D dans F est un hyperplan de F.

Attention, comme annoncé, l'orthogonal est ici pris dans F, on pourrait l'écrire $O = D^{\perp} \cap F$ pour bien insister.

Finalement on a $\dim(O) = \dim(F) - 1 = n$ et donc O a une b.o.n. (u_1, \ldots, u_n) .

Montrons que $\left(u_1,\ldots,u_n,\frac{u}{\|u\|}\right)$ est une b.o.n. de F.

Cette famille a $n+1=\dim(F)$ vecteurs donc il suffit de montrer qu'elle est orthonormée. Tous les vecteurs sont de norme 1 (soit par hypothèse de récurrence, soit par homogénéïté). Tous les vecteurs sont bien orthogonaux entre eux (soit par hypothèse de récurrence, soit parce que O et D sont orthogonaux). C'est donc bien une famille orthonormée formée de n+1 vecteurs, et donc une base orthonormée.

La propriété est donc bien héréditaire. Elle est donc vraie pour tout entier $n \in \mathbb{N}$.

Conclusion : Tous les sevs de E de dimension finie ont bien une b.o.n.

Théorème 12: Supplémentaire orthogonal..

Soit F un sev de E de dimension finie. Alors $F \oplus F^{\perp} = E$. Autrement dit, F a un supplémentaire orthogonal.

DÉMONSTRATION. Notons $p := \dim F$

Soit $x \in E$. Considérons une décompositin convenable

$$x = \underbrace{x_F}_{\in F} + \underbrace{x_{F^{\perp}}}_{\in F^{\perp}}$$

F est de dim finie p donc il a une b.o.n. (u_1, u_2, \ldots, u_p)

Donc x_F s'écrit sous la forme

$$x_F = \lambda_1 u_1 + \dots + \lambda_p u_p$$

$$x = \underbrace{\lambda_1 u_1 + \dots + \lambda_p u_p}_{\perp} + \underbrace{x_{F^{\perp}}}_{\in F^{\perp}}$$

Pour $i \in [1, p]$ on a donc

$$\langle x, u_i \rangle = \lambda_1 \underbrace{\langle u_1, u_i \rangle}_0 + \dots + \lambda_i \underbrace{\langle u_i, u_i \rangle}_1 + \dots + \lambda_p \underbrace{\langle u_p, u_i \rangle}_0 + \underbrace{\langle x_{F^{\perp}}, u_i \rangle}_0$$

donc
$$\lambda_i = \langle x, u_i \rangle$$

donc
$$\begin{cases} x_F &= \sum_{k=1}^p \langle x, u_k \rangle \, u_k \\ x_{F^\perp} &= x - x_F \end{cases}$$
 unique candidat

Synthèse

$$\begin{cases} x = x_F + x_{F^{\perp}} & \text{non colin\'eaire par construction} \\ x_F \in F & \text{car } x_F = \underbrace{\lambda_1 u_1 + \dots + \lambda_p u_p}_{\text{CL de vecteurs de } F} \\ x_{F^{\perp}} \in F^{\perp} & \text{ie} x_{F^{\perp}} \in \text{Vect} \left(u_1, \dots, u_p\right)^{\perp} \\ & \text{ie} \ x_{F^{\perp}} \in \left\{u_1, \dots, u_p\right\}^{\perp} \\ & \text{ie} \ \forall i \in \llbracket 1, p \rrbracket, \langle x_{F^{\perp}}, u_i \rangle = 0 \end{cases}$$

Soit $i \in [1, p]$

$$\begin{split} \langle x_{F^{\perp}}, u_i \rangle &= \left\langle x - \sum_{k=1}^p \left\langle x, u_k \right\rangle u_k, u_i \right\rangle \\ &= \left\langle x, u_i \right\rangle - \sum_{k=1}^p \left\langle x, u_k \right\rangle \underbrace{\left\langle u_k, u_i \right\rangle}_{\delta_{i,k}} \quad \text{par bilinéarité} \\ &= \left\langle x, u_i \right\rangle - \left\langle x, u_i \right\rangle \end{split}$$

Théorème 13: Théorème de la b.o.n. incomplète.

Soit F un sev de E euclidien. Alors toute famille orthonormée de F peut être complétée en b.o.n. de F.

DÉMONSTRATION. (u_1, \ldots, u_p) famille orthonormée de F avec dim $F := n < +\infty$

Elle est libre car toute famille orthogonale de vecteurs non-nuls l'est.

On se place dans l'espace euclidien $(F, \langle \cdot, \cdot \rangle)$ et on note $G = \text{Vect}(u_1, \dots, u_p)$

 G^{\perp} est un suppplémentaire de G dans F $i. e. <math display="inline">G \oplus G^{\perp} = F$

 G^{\perp} est de dimension finie n-p donc G^{\perp} a une b.o.n. (thm. 11), notons-la (v_1,\ldots,v_{n-p})

Alors $(u_1, \ldots, u_p, v_1, \ldots, v_{n-p})$ est une b.o.n. de F: c'est une base adaptée à la somme directe. De plus

—
$$||u_i|| = ||v_i|| = 1$$
 par définition

—
$$\langle u_i, u_j \rangle = \langle v_i, v_j \rangle = 0$$
 par définition pour $i \neq j$

$$-\left\langle \underbrace{v_i}_{\in G}, \underbrace{v_j}_{\in G^{\perp}} \right\rangle = 0 \text{ par définition}$$

II.6 Cas d'un espace euclidien

Dans cette sous-section, on suppose que $(E, \langle \cdot, \cdot \rangle)$ est un espace euclidien de dimension n. Évidemment, la propriété fondamentale sur les sevs en dimension finie nous assure que tous les sevs de E sont de dimension finie, donc ont un supplémentaire orthogonal. C'est la fête.

Proposition 4.

Si $(E, \langle \cdot, \cdot \rangle)$ est eucldien alors pour tout sev F de E on a $\begin{cases} F \oplus F^{\perp} = E \\ (F^{\perp})^{\perp} = F. \end{cases}$

DÉMONSTRATION. 1. F est de dimension finie (inférieure à $\dim(E)$) donc $F \oplus F^{\perp} = E$ d'après le théorème 12.

- 2. C'est la première question de CCINP 77.
 - On a toujours $F \subset (F^{\perp})^{\perp}$: Soit $x \in F$. Montrons $x \in (F^{\perp})^{\perp}$. Soit $y \in F^{\perp}$. On a $\langle y, x \rangle = 0i$. e. $\langle x, y \rangle = 0$ par symétrie. Ceci est vrai pour tout vecteur $y \in F^{\perp}$ donc on a bien $x \in (F^{\perp})^{\perp}$.
 - Montrons maintenant l'égalité des dimensions. On a vu avec le théorème 12 qu'on a $F \oplus F^{\perp} = E$, mais F^{\perp} aussi est un sev de E donc est de dimension finie, et donc le théorème 12 donne aussi $(F^{\perp})^{\perp} \oplus F^{\perp} = E$. Ainsi F et $(F^{\perp})^{\perp}$ sont deux supplémentaires de F^{\perp} en dimension finie. Ils ont donc la même dimension.

• On a finalement
$$\begin{cases} F \subset (F^{\perp})^{\perp} \\ \dim(F) = \dim((F^{\perp})^{\perp} \end{cases} \quad \text{donc } F = F^{\perp \perp}.$$

Proposition 5: Loi de De Morgan euclidiennes.

Si $(E, \langle \cdot, \cdot \rangle)$ est eucldien alors pour tout sevs F et G de E on a :

- 1. $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$ (marche dans tout préhilbertien)
- 2. $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$ (ne marche que dans les euclidiens)

DÉMONSTRATION. C'est la deuxième question de CCINP 77. Faisons-le quand même ici :

$$\forall f \in F, \left\langle x, \underbrace{f + 0_E}_f \right\rangle = 0 \text{ if } x \in F^{\perp}$$

En particularisant (\square) pour $f = 0_E \in F$, on obtient

$$\forall g \in G, \left\langle x, \underbrace{g + 0_E}_g \right\rangle = 0 \text{ if } x \in G^{\perp}$$

Soit
$$x \in F^{\perp} \cap G^{\perp}$$

$$\forall f \in F, \qquad \langle x, f \rangle = 0$$

$$\forall g \in G, \qquad \langle x, g \rangle = 0$$

$$\forall f \in F, \forall g \in G, \qquad \langle x, f \rangle + \langle x, g \rangle = 0$$

$$i. \ e. \ \forall f \in F, \forall g \in G, \qquad \langle x, f + g \rangle = 0 \text{ par bilinéarité}$$

$$i. \ e. \ \forall y \in F + G, \qquad \langle x, y \rangle = 0$$

$$i. \ e. \ x \in (F + G)^{\perp}$$

2.

$$(F^{\perp} + G^{\perp})^{\perp} = F^{\perp \perp} \cap G^{\perp \perp}$$
ie $(F^{\perp} + G^{\perp})^{\perp} = F \cap G$
donc $(F^{\perp} + G^{\perp})^{\perp \perp} = (F \cap G)^{\perp}$
ie $F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$

Théorème-définition 14.

Soit H un hyperplan de E, où $(E, \langle \cdot, \cdot \rangle)$ est euclidien.

Alors il existe un vecteur non nul η tel que $\forall x \in E, x \in H \Leftrightarrow \langle x, \eta \rangle = 0$.

Un tel vecteur est appelé vecteur normal de H.

Rappel: en dimension infinie, les hyperplans peuvent ne pas avoir de vecteur normal, cf exemple 16-3.

DÉMONSTRATION. $H \oplus H^{\perp} = E$ car on est en dimension finie donc $H^{\perp} =: \text{Vect}(() u)$ est une droite. (avec $u \neq 0_E$)

$$H = H^{\perp \perp} = \text{Vect}(u)^{\perp}$$

Donc pour $x \in E$ on a

$$x \in H \Leftrightarrow \langle x, u \rangle = 0$$

On pose $\eta = u$.

Hyperplan dans \mathbb{R}^3 H est de la forme

$$H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad \underbrace{ax + by + cz}_{z} = 0 \right\}$$

$$\left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\rangle$$
avec $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \neq \vec{0}$

III Projection orthogonale et applications

Dans cette section encore, $(E, \langle \cdot, \cdot \rangle)$ désigne un espace préhilbertien et $\|\cdot\|$ la norme euclidienne associée, ainsi que d la distance euclidienne associée.

III.1 Formule de projection

Définition 12: Projection orthogonale.

Soit F un sev de E qui a un supplémentaire orthogonal (par exemple F de dimension finie). On appelle projection orthogonale sur F la projection $p_F^{\perp} = p_F^{F^{\perp}}$.

Remarque 6

On définit de même une symétrie orthogonale. Les projections et symétries orthogonales sont "celles de notre enfance" dans \mathbb{R}^2 et \mathbb{R}^3 munis du produit scalaire usuel.

Exemple 17

 \mathbb{R}^3 (usuel) Soit $p \in \mathcal{L}(\mathbb{R}^3)$ tel que

$$p\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

est la <u>projection orthogonale</u> sur $\operatorname{Vect}(e_1, e_2) = F$ (on a donc $F^{\perp} = \operatorname{Vect}(e_3)$) $\mathcal{M}_n(\mathbb{R})$ (canonique) p est la projection orthogonale sur $\mathcal{S}_n(\mathbb{R})$ est

Si vous ne retenez qu'un seul résultat du chapitre, que soit celui M: de soit celui M

Théorème 15: Formule de projection.

Soit F un sev de dimension finie p de E et $(\varepsilon_1, \ldots, \varepsilon_p)$ une b.o.n. de F. On a $\forall x \in E, \ p_F^{\perp}(x) = \sum_{i=1}^p \langle x, \varepsilon_i \rangle \varepsilon_i$.

DÉMONSTRATION. On veut montrer que $(\varepsilon_1, \ldots, \varepsilon_n)$ b.o.n. de F

$$p_F^{\perp}(x) = \sum_{k=1}^{p} \langle x, \varepsilon_k \rangle \, \varepsilon_k$$
$$= \langle x, \varepsilon_1 \rangle \, \varepsilon_1 + \dots + \langle x, \varepsilon_p \rangle \, \varepsilon_p$$

Par définition on a $p_F^{\perp}(x) \in F$ Donc il existe $\lambda_1, \ldots, \lambda_p$ tel que $p_F^{\perp}(x) = \sum_{k=1}^p \lambda_k \varepsilon_k$ Calculons pour $i \in [\![1,p]\!]$

$$\begin{split} \left\langle p_F^{\perp}(x), \varepsilon_i \right\rangle &= \left\langle \sum_{k=1}^p \lambda_k \varepsilon_k, \varepsilon_i \right\rangle \\ &= \sum_{k=1}^p \lambda_k \delta_{ij} \\ &= \lambda_i \end{split}$$

De plus
$$x = \underbrace{p_F^{\perp}(x)}_{\in F} + \underbrace{\left(x - p_F^{\perp}(x)\right)}_{\in F^{\perp}}$$

Donc

$$\begin{split} \langle x, \varepsilon_i \rangle &= \left\langle p_F^\perp(x) + (x - p_F^\perp(x)), \varepsilon_i \right\rangle \\ &= \left\langle p_F^\perp(x), \varepsilon_i \right\rangle + \left\langle \underbrace{x - p_F^\perp(x)}_{F^\perp}, \underbrace{\varepsilon_i}_{\in F} \right\rangle \end{split} \quad \text{par bilinéarité} \\ &= \lambda_i \end{split}$$

Exemples 18

1. « C'est facile de projeter orthogonalement sur une droite ». Exemple :

Trouvons
$$p_F^{\perp}$$
 dans \mathbb{R}^3 pour $F = \text{Vect} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

(a) Trouver une b.o.n.de F

Une base quelconque F est donc $\begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

$$i. e. (\varepsilon_i) := \left(\frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix}\right)$$

(b) On utilise la formule de projection

$$\begin{split} p_F^\perp \begin{pmatrix} x \\ y \\ z \end{pmatrix} &= \left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \varepsilon_i \right\rangle \varepsilon_i \\ &= \left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\rangle \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \\ &= \frac{1}{14} \left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\rangle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \\ &= \frac{x + 2y + 3z}{14} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \\ &= \frac{1}{14} \begin{pmatrix} x + 2x + 3z \\ 2x + 4y + 6z \\ 3x + 6y + 9z \end{pmatrix} \\ \text{ie } \operatorname{Mat}_{\mathcal{C}}(p_F^\perp) &= \frac{1}{14} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \end{split}$$

2. « C'est facile de projeter orthogonalement sur un hyperplan ». Exemple :

Trouvons p_F^{\perp} pour \mathbb{R}^3 (usuel) avec $F = \{(x, y, z) \in \mathbb{R}^3, 1x + 1y + 1z = 0\} = \text{Vect}\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$p_F^{\perp} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - p_{F^{\perp}}^{\perp} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

(a) Trouver une b.o.n.

$$\left(\frac{1}{\left\|\begin{pmatrix}1\\1\\1\end{pmatrix}\right\|}\begin{pmatrix}1\\1\\1\end{pmatrix}\right) = \frac{1}{\sqrt{3}}\begin{pmatrix}1\\1\\1\end{pmatrix} \implies \varepsilon_i = \frac{1}{\sqrt{3}}\begin{pmatrix}1\\1\\1\end{pmatrix}$$

(b) On utilise la formule de projection

$$p_{F^{\perp}}^{\perp} = \left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \varepsilon_i \right\rangle \varepsilon_i$$

$$= \frac{1}{3} \left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\implies \operatorname{Mat}_{\mathcal{C}}(p_{F^{\perp}}^{\perp}) = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\implies \operatorname{Mat}_{\mathcal{C}}(p_F^{\perp}) = I_3 - \operatorname{Mat}_{\mathcal{C}}(p_{F^{\perp}}^{\perp})$$

$$= \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

Et pour les autres sevs? Il faudrait avoir des bases orthonormées...

III.2 Algorithme d'orthonormalisation de Gram-Schmidt

Théorème 16: Gram-Schmidt.

Soit F un sev de E de dimension finie p et (u_1, \ldots, u_p) une base de F.

Alors il existe une b.o.n. $(\varepsilon_1, \ldots, \varepsilon_p)$ de F telle que $\forall i \in \{1, \ldots, p\}$, $\text{Vect}(\varepsilon_1, \ldots, \varepsilon_i) = \text{Vect}(u_1, \ldots, u_i)$.

De plus, si on impose $\forall i \in \{1, \ldots, p\}, \langle u_i, \varepsilon_i \rangle > 0$, alors la base $(\varepsilon_1, \ldots, \varepsilon_p)$ est unique.

DÉMONSTRATION. Pour l'existance, on décrit l'algorithme d'orthogonalisation de Gran-Schmidt

Etape 1 On cherche (ε_1) orthonormée tel que $\text{Vect}(\epsilon_1) = \text{Vect}(u_1)$ On pose $\epsilon_1 = \frac{u_1}{\|u_1\|}$ et on a bien $\begin{cases} \|\epsilon_1\| \\ \text{Vect}(\epsilon_1) = \text{Vect}(u_1) \end{cases}$

Etbpe 2 On cherche ϵ_2 tel que (ϵ_1, ϵ_2) orthonormée et Vect $(u_1, u_2) = \text{Vect}(\epsilon_1, \epsilon_2)$ On note $p_2 = p_{\text{Vect}(\epsilon_1)}^{\perp} = \langle u_2, \epsilon_1 \rangle \epsilon_1$ par formule de projection Puis $v_2 = u_2 - p_2$ de sorte que

$$\begin{split} \langle v_2, \epsilon_1 \rangle &= \langle u_2 - p_2, \epsilon_1 \rangle \\ &= \langle u_2, \epsilon_1 \rangle - \langle p_2, \epsilon_1 \rangle \\ &= \langle u_2, \epsilon_1 \rangle - \langle \langle u_2, \epsilon_1 \rangle \, \epsilon_1, \epsilon_1 \rangle \\ &= \langle u_2, \epsilon_1 \rangle - \langle u_2, \epsilon_1 \rangle \, \|\epsilon_1\|^2 \\ &= 0 \end{split}$$

Puis $\epsilon_2 = \frac{v_2}{\|v_2\|}$

On a bien (ϵ_1, ϵ_2) orthonormée par construction $\text{Vect}(u_1, u_2) = \text{Vect}(\epsilon_1, \epsilon_2)$ (lemme CL de CL)

On pose $p_3 = p_{\text{Vect}(\epsilon_1, \epsilon_2)}^{\perp}(u_3) = \langle u_3, \epsilon_1 \rangle \epsilon_1 + \langle u_3, \epsilon_2 \rangle \epsilon_2$ par formule de projection Puuis

$$v_3 = u_3 - p_3 \perp \text{Vect}(\epsilon_1, \epsilon_2)$$
 par construction
$$\epsilon_3 = \frac{v_3}{\|v_3\|}$$

On a bien les propriétés demandées.

p Étant construits $(\epsilon_1, \dots, \epsilon_{p-1})$ On pose $p_p = p_{\text{Vect}(\epsilon_1, \dots, \epsilon_{p-1})}^{\perp} = \langle u_p, \epsilon_1 \rangle \epsilon_1 + \dots + \langle u_p, \epsilon_{p-1} \rangle \epsilon_{p-1}$ par formule de projection Puis

$$v_p = u_p - p_p$$

$$\epsilon_p = \frac{v_p}{\|v_p\|}$$

Exemples 19

1. Dans \mathbb{R}^3 muni de son ps usuel, gram-schmidtons $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$.

(a)

$$\epsilon_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

(b)

$$v_{2} = u_{2} - p_{\text{Vect}(\epsilon)_{1}}^{\perp}(u_{2})$$

$$= u_{2} - \langle u_{2}, \epsilon_{1} \rangle \epsilon_{1}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$\implies \epsilon_{k} = \frac{v_{2}}{\|v_{2}\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

(c)

$$v_{3} = u_{3} - p_{\text{Vect}(\epsilon_{1},\epsilon_{2})}^{\perp}(u_{3})$$

$$= u_{3} - \langle u_{2}, \epsilon_{1} \rangle \epsilon_{1} - \langle u_{3}, \epsilon_{2} \rangle \epsilon_{2}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{2} \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{6} \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \right\rangle \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 6 \\ 6 \\ 0 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 0 \\ 3 \\ 3 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 4 \\ 4 \\ -4 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$$

$$= \frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$\Rightarrow \epsilon_{3} = \frac{v_{3}}{\|v_{3}\|}$$

$$= \frac{\frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}}{\|\frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}} \|$$

- 2. Dans $\mathbb{R}_2[X]$ muni du ps intégral entre 0 et 1, gram-schmidtons la base canonique.
 - $$\begin{split} & \epsilon_1 = \frac{1}{\|1\|} \|1\|^2 = \int_0^1 1^2 \mathrm{d}X = 1 \text{ donc } \epsilon_1 = 1 \\ & p_2 = p_{\mathrm{Vect}(\epsilon_1)}^{\perp} X \cdot 1 = \frac{1}{2} \\ & v_2 = X \frac{1}{2} \\ & \epsilon_3 = \frac{v_2}{\|v_2\|} \end{split}$$

$$||X - \frac{1}{2}||^2 = \int_0^1 \left(X - \frac{1}{2}\right)^2$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} t^2 dt$$

$$= \frac{1}{12}$$

$$t = X - \frac{1}{2}$$

$$p_{3} = p_{\text{Vect}(\epsilon_{1},\epsilon_{2})}^{\perp}(X^{2})$$

$$= \langle X^{2}, 1 \rangle 1 + \left\langle X^{2}, \sqrt{12}(X - \frac{1}{2}) \right\rangle \sqrt{12}(X - \frac{1}{2})$$

$$= \int_{0}^{1} X^{2} \cdot 1 + 12 \left\langle X^{2}, X - \frac{1}{2} \right\rangle (X - \frac{1}{2})$$

$$= \frac{1}{3} + 12 \int_{0}^{1} \left(X^{3} - \frac{X^{2}}{2} \right) \left(X - \frac{1}{2} \right)$$

$$= \frac{1}{3} + 12 \left[\frac{X^{4}}{4} - \frac{X^{3}}{6} \right]_{0}^{1} \left(X - \frac{1}{2} \right)$$

$$= \frac{1}{3} + 12 \left(\frac{1}{4} - \frac{1}{6} \right) \left(X - \frac{1}{2} \right)$$

$$= X - \frac{1}{2} + \frac{1}{3}$$

$$= X - \frac{1}{6}$$

$$v_{3} = X^{2} - p_{3} = X^{2} - X + \frac{1}{6}$$

$$\|X^{2} - X + \frac{1}{6}\|$$

$$\|X^{2} - X + \frac{1}{6}\|$$

$$= 180$$

$$= \frac{1}{5 \cdot 36}$$

$$\epsilon_{3} = \frac{1}{\sqrt{\frac{1}{5 \cdot 36}}} \left(X^{2} - X + \frac{1}{6} \right)$$

$$= 6\sqrt{5} \left(X^{2} - X + \frac{1}{6} \right)$$

$$= \sqrt{5}(6X^{2} - 6X + 1)$$

Application bonus

$$E=R^4\quad\text{usuel}$$

$$F=\operatorname{Vect}\left(\begin{pmatrix}1\\0\\1\\0\end{pmatrix},\begin{pmatrix}1\\2\\0\\0\end{pmatrix}\right)$$

$$p_F^{\perp}\begin{pmatrix}x\\y\\z\\t\end{pmatrix}=?$$

Utilisons la formule de projection On cherche une b.o.n. de F. Gram-Schmidtons

$$- \epsilon_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$$

$$p_{2} = p_{\text{Vect}(\epsilon_{1})}^{\perp}(u_{2})$$

$$= \langle u_{2}, \epsilon_{1} \rangle \epsilon_{1}$$

$$= \frac{1}{2} \left\langle \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

$$v_{2} = u_{2} - p_{2} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} \\ 2 \\ -\frac{1}{2} \\ 0 \end{pmatrix} / / \begin{pmatrix} 1 \\ 4 \\ -1 \\ 0 \end{pmatrix}$$

$$\epsilon_{2} = \frac{v_{2}}{\|v_{2}\|}$$

$$= \frac{1}{\sqrt{18}} \begin{pmatrix} 1 \\ 4 \\ -1 \\ 0 \end{pmatrix}$$

$$= \frac{1}{3\sqrt{2}} \begin{pmatrix} 1 \\ 4 \\ -1 \\ 0 \end{pmatrix}$$

$$\begin{split} \mathbf{D}\text{'où pour} & \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \\ & p_F^\perp = \langle (x,y,z,t), \epsilon_1 \rangle \, \epsilon_1 + \langle (x,y,z,t), \epsilon_2 \rangle \, \epsilon_2 \\ & = \frac{1}{2} \, \langle (x,y,z,t), (1,0,1,0) \rangle \, (1,0,1,0) + \frac{1}{18} \, \langle (x,y,z,t), (1,4,-1,0) \rangle \, \begin{pmatrix} 1 \\ 4 \\ -1 \\ 0 \end{pmatrix} \\ & = \frac{1}{18} \, \left((9x + 9z) \, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + (x + 4y - z) \, \begin{pmatrix} 1 \\ 4 \\ -1 \\ 0 \end{pmatrix} \right) \\ & = \frac{1}{18} \, \begin{pmatrix} 10x + 4y + 8z \\ 4x + 16y - 4z \\ 8x - 4y + 10z \end{pmatrix} \\ & \mathbf{Mat}_{\mathcal{C}}(p_F^\perp) = \frac{1}{18} \, \begin{pmatrix} 10 & 4 & 8 & 0 \\ 4 & 16 & -4 & 0 \\ 8 & -4 & 10 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{split}$$

III.3 Magie des b.o.n.

Théorème 17: Décomposition en b.o.n..

Supposons que $(\varepsilon_i)_{i\in I}$ forme une b.o.n. de E. Tout vecteur $x\in E$ se décompose dans cette base $x=\sum_{i\in I}\langle x,\varepsilon_i\rangle\varepsilon_i$.

(La somme est bien finie : elle n'a qu'un nombre fini de termes non nuls.)

DÉMONSTRATION. Pour E de dimension finie, c'est juste la formule de projection.

Sinon : on copie la démonstration de la formule de projection.

Soit $x \in E$. Par définition d'une base il peut s'écrire de façon unique sous la forme $x = \lambda_1 \varepsilon_{i_1} + \ldots + \lambda_n \varepsilon_{i_n}$.

Pour
$$p \in \{1, ..., n\}$$
 on a bien, par bilinéarité : $\langle x, \varepsilon_{i_p} \rangle = \langle \sum_{k=0}^n \lambda_k \varepsilon_{i_k}, \varepsilon_{i_p} \rangle = \sum_{k=0}^n \lambda_k \langle \varepsilon_{i_k}, \varepsilon_{i_p} \rangle = \sum_{k=0}^n \lambda_k \delta_{k,p} = \lambda_p$.
Pour $i \notin \{i_1, ..., i_n\}$ on a bien, par bilinéarité : $\langle x, \varepsilon_i \rangle = \langle \sum_{k=0}^n \lambda_k \varepsilon_{i_k}, \varepsilon_i \rangle = \sum_{k=0}^n \lambda_k \langle \varepsilon_{i_k}, \varepsilon_{i_p} \rangle = \sum_{k=0}^n \lambda_k \langle \varepsilon_{i_k}, \varepsilon_{i_p} \rangle = \sum_{k=0}^n \lambda_k \langle \varepsilon_{i_k}, \varepsilon_{i_p} \rangle = \sum_{k=0}^n \lambda_k \langle \varepsilon_{i_k}, \varepsilon_{i_k} \rangle = \sum_{k=0}^n \lambda_k \langle \varepsilon_{i_k}, \varepsilon_{i_k} \rangle = \sum_{k=0}^n \lambda_k \langle \varepsilon_{i_k}, \varepsilon_{i_k} \rangle = 0$.

Théorème 18: Expression du produit scalaire et de la norme en b.o.n..

Supposons que $(\varepsilon_i)_{i\in I}$ forme une b.o.n. de E. Soient x et y dans E.

Notons $\begin{cases} x = \sum_{i \in I} x_i \varepsilon_i \\ y = \sum_{i \in I} y_i \varepsilon_i \end{cases}$ (les x_i sont les $\langle x, \varepsilon_i \rangle$, seuls un nombre fini d'entre eux sont non nuls, idem pour les y_i).

- 1. On a $\langle x,y\rangle=\sum_{i\in I}x_iy_i$ (c'est une somme finie : seul un nombre fini de termes sont non nuls).
- 2. On a $||x||^2 = \sum_{i \in I} x_i^2$ (c'est une somme finie : seul un nombre fini de termes sont non nuls).

DÉMONSTRATION.

- 1. C'est juste la bilinéarité : $\langle x,y \rangle = \left\langle \sum_{i \in I} x_i \varepsilon_i, \sum_{j \in I} y_j \varepsilon_j \right\rangle = \sum_{i \in I} \sum_{j \in I} x_i y_j \langle \varepsilon_i, \varepsilon_j \rangle = \sum_{i \in I} \sum_{j \in I} x_i y_j \delta_{i,j} = \sum_{i \in I} x_i y_i \delta_{i,j}$
- 2. C'est juste le cas y = x.

Autrement dit, si on a une b.o.n. \mathcal{B} quelconque de E, alors nécessairement le produit scalaire de E est le produit scalaire canoniquement associé à \mathcal{B} .

III.4 Distance à un sous-espace vectoriel

Définition 13.

Soit $A \in E$ et $\mathcal{P} \subset E$, $\mathcal{P} \neq \emptyset$. On appelle <u>distance de A à \mathcal{P} </u> le réel $d(A, \mathcal{P}) = \inf_{B \in \mathcal{P}} d(A, B)$.

Un dessin:

Théorème 19: de projection orthogonale.

Soit F un sev de E de dimension finie, soit $A \in E$. Alors $d(A, F) = d(A, p_F^{\perp}(A))$.

DÉMONSTRATION. Il est clair que $p_F^{\perp}(A) \in F$. Reste à montrer $\forall B \in F, d(A, B) \geq d(A, p_F^{\perp}(A))$ Soit $B \in F$.

$$d(A,B)^{2} = \|B - A\|^{2}$$

$$= \|B - p_{F}^{\perp}(A) + p_{F}^{\perp}(A) - A\|^{2}$$

$$= \|\underbrace{B - p_{F}^{\perp}(A)}_{\in F} + \underbrace{p_{F}^{\perp}(A) - A}_{\in F}$$

$$= \underbrace{\|B - p_{F}^{\perp}(A)\|^{2}}_{\geq 0} + \underbrace{\|p_{F}^{\perp} - A) - A\|^{2}}_{d(A,p_{F}^{\perp}(A))^{2}}$$

$$\geq d(A, p_{F}^{\perp} - A))^{2} \text{ie } d(A,B)$$

on fait un crochet par le 3e côté

 $\geq d(A, p_F^{\perp}(A))$ par croissance de $\sqrt{}$

Exemples 20

- 1. Dans \mathbb{R}^3 muni de produit scalaire usuel, calculons la distance de $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ à la droite Vect $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.
 - (a) On cherche une b.o.n. de F

C'est
$$\left(\underbrace{\frac{1}{\sqrt{3}}\begin{pmatrix}1\\1\\1\end{pmatrix}}_{\epsilon_1}\right)$$

(b) Calcul de la projection

$$\begin{split} p_F^{\perp}(A) &= \frac{1}{3} \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ &= \frac{1}{3} 6 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ &= \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \end{split}$$

(c) Calcul de la distance

$$d(A, F) = ||A - p_F^{\perp}(A)||$$

$$= ||\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}||$$

$$= ||\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}||$$

$$= \sqrt{2}$$

2. Calculons
$$\inf_{(a,b)\in\mathbb{R}^2} \int_{-\pi}^{\pi} \left(t - a\cos(t) - b\sin(t)\right)^2 dt$$

$$\inf_{(a,b)\in\mathbb{R}^2} \int_{-\pi}^{\pi} \left(t - a\cos(t) - b\sin(t)\right)^2 dt$$

$$\inf_{B\in F} d(A,B)^2$$

$$E = \mathcal{C}([-\pi,\pi],\mathbb{R})$$

$$\langle f,g \rangle = \int_{-\pi}^{\pi} f \cdot g$$

$$F = \text{Vect }(\cos,\sin)$$

$$A = t \mapsto t$$

On cherche donc

$$d(A, F)^2 = d(A, p_F^{\perp}(A))^2$$

 $p_F^{\perp}(A) = ?$

Or $\cos \pm \sin$ et $\|\cos\| = \|\sin\| = \sqrt{\pi}$ Donc $(\frac{\cos}{\sqrt{\pi}}, \frac{\sin}{\sqrt{\pi}})$ forme une b.o.n. de F

$$\begin{aligned} p_F^{\perp}(A) &= \langle A, \epsilon_1 \rangle \, \epsilon_1 + \langle A, \epsilon_2 \rangle \, \epsilon_2 \\ &= \frac{1}{\pi} \left(\int_{-\pi}^{\pi} t \cos t \, \, \mathrm{d}t \right) \cos + \frac{1}{\pi} \left(\int_{-\pi}^{\pi} t \sin t \, \, \mathrm{d}t \right) \sin \\ &= \frac{1}{\pi} \left(\left[-\mathrm{id} \cos \right]_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \cos \right) \\ &= \frac{1}{\pi} ((\pi + \pi) + \left[\sin \right]_{-\pi}^{\pi}) \sin \\ &= 2 \sin \end{aligned}$$

D'où

$$\inf_{(a,b)\in\mathbb{R}^2} \int_{-\pi}^{\pi} (t - a \cdot \cos t - b \sin t)^2 dt = d(A, F)^2$$

$$= d(A, p_F^{\perp}(A))^2$$

$$= d(id, 2 \sin)^2$$

$$= \|id - 2 \sin \|^2$$

$$= \int_{-\pi}^{\pi} (t - 2 \sin t)^2 dt$$

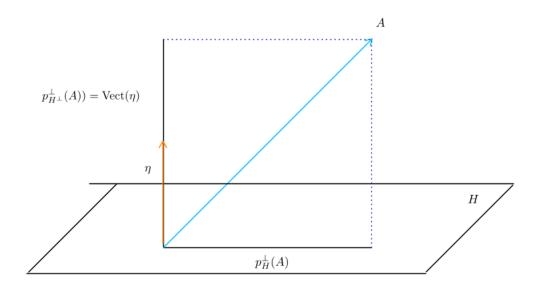
$$= \int_{-\pi}^{\pi} id^2 - 4 \int_{-\pi}^{\pi} id \cdot \sin + 4 \int_{-\pi}^{\pi} \sin^2 t dt$$

$$= \frac{2\pi^3}{3} - 8\pi + 4\pi$$

$$= \frac{2\pi^3}{3} - 4\pi$$

Théorème 20: Distance à un hyperplan en dimension finie.

On suppose E euclidien. Soit H un hyperplan de vecteur normal unitaire η et $A \in E$. Alors $d(A, H) = |\langle A, \eta \rangle|$.



DÉMONSTRATION. On a

$$d(A, H) = d(A, p_F^{\perp}(A))$$

$$= \|\underbrace{A - p_H^{\perp}(A)}_{A}\|$$

$$= \|\underbrace{p_H^{\perp}(A) + p_{H^{\perp}}^{\perp}(A)}_{A} - p_H^{\perp}(A)\|$$

$$= \|p_{H^{\perp}}^{\perp}\|$$

$$= \|p_{\text{Vect}(\eta)}^{\perp}(A)\|$$

$$= \|\langle A, \eta \rangle \eta\|$$

$$= |\langle A, \eta \rangle | \cdot 1$$

par homogénéité

Application 7 Dans \mathbb{R}^3 muni du produit scalaire usuel. Soit $H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ ax + by + cz = 0 \right\}$ et $M = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$. Alors $d\left(M, H\right) = \frac{|ax + by + cz|}{\sqrt{a^2 + b^2 + c^2}}$.

DÉMONSTRATION. $H = \{(x, y, z), ax + by + cz = 0\}$ a pour vecteur normal $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$

donc pour vectuer normal unitaire $\frac{1}{\sqrt{a^2+b^2+c^2}} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

$$d\begin{pmatrix} x \\ y \\ z \end{pmatrix}, H) = \left| \left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \frac{1}{\sqrt{a^2 + b^2 + c^2}} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\rangle \right|$$
$$= \frac{|ax + by + cz|}{\sqrt{a^2 + b^2 + c^2}}$$

Remarque 7

C'est un cas particulier d'un résultat vu (?) en TS :

Si
$$\mathcal{P}$$
 a pour équation $ax + by + cz + d = 0$ alors $d\left(\binom{x}{y}, \mathcal{P}\right) = \frac{|ax + by + cz + d|}{\sqrt{a^2 + b^2 + c^2 + d}}$.

Mais pour le retrouver, il va falloir faire le cours sur les sous-espaces affines!