Compacité

Bolzano-Weierstrass

Exercice 1. Une caractérisation de la convergence.

Montrer qu'une suite bornée converge si et seulement si toutes ses sous-suites qui convergent ont la même limite.

Exercice 2. Suite rationnelle de limite irrationnelle.

- 1. Soit $x \in \mathbb{R} \setminus \mathbb{Q}$, $(p_n)_{n \in \mathbb{N}}$ une suite à valeurs dans \mathbb{Z} et $(q_n)_{n \in \mathbb{N}}$ une suite à valeurs dans $\mathbb{N} \setminus \{0\}$ telles que $\left(\frac{p_n}{q_n}\right)_{n \in \mathbb{N}}$ soit une suite qui converge vers x. Montrer qu'on a $q_n \to +\infty$ et $|p_n| \to +\infty$.

 Rappel : si une suite ne tend pas vers $+\infty$ alors elle a une sous-suite majorée.
- 2. Application : pour tout réel x on note $f(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q} \\ \frac{1}{q} & \text{si } x \in \mathbb{Q} \text{ et } x \text{ a pour écriture irréductible } \frac{p}{q} \end{cases}$ Montrer que f est discontinue en tout $a \in \mathbb{Q}$ et continue en tout $a \in \mathbb{R} \setminus \mathbb{Q}$.

HEINE ET BORNES ATTEINTES

Exercice 3. Autre méthode pour l'uniforme continuité de $\sqrt{}$

- 1. Justifier rapidement que la fonction $\sqrt{\ }$ est uniformément continue sur [0,2] et sur $[1,+\infty[$.
- 2. En déduire que $\sqrt{}$ est uniformément continue sur \mathbb{R} . Indication : pour $\varepsilon > 0$, on a η_1 associé par UC sur [0,2] et η_2 associé par UC sur $[1, +\infty[$, on peut alors poser $\eta = \min(\eta_1, \eta_2, 1)$.

Exercice 4. Continuité et bornitude

On suppose que $f, g : \mathbb{R} \to \mathbb{R}$ vérifient :

- i/f continue
- ii/ g bornée

Montrer que $g \circ f$ et $f \circ g$ sont bornées.

Exercice 5. Fonctions bornées

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{t \to \infty} f$ et $\lim_{t \to \infty} f$ existent et sont finies.
 - a. Montrer que f est bornée.
 - b. Atteint-elle nécessairement ses bornes? Une de ses deux bornes?
 - c. Mêmes questions si $\lim_{+\infty} f = \lim_{-\infty} f$.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue telle que $\lim_{t\to\infty} f = \lim_{t\to\infty} f = +\infty$. Montrer que f admet un minimum sur \mathbb{R} .

Compacité

Exercice 1. Une caractérisation de la convergence.

Montrer qu'une suite bornée converge si et seulement si toutes ses sous-suites qui convergent ont la même limite.

Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$, bornée. Ainsi, il existe $a \leq b \in \mathbb{R}$ tels que $\forall n \in \mathbb{N}, u_n \in [a, b]$.

 \Longrightarrow Supposons que $(u_n)_n$ converge et notons ℓ sa limite. En particulier, toutes ses sous-suites convergent vers ℓ et donc toutes ses sous-suites qui convergent convergent vers ℓ .

 \Leftarrow Par contraposition. Supposons que la suite $(u_n)_n$ diverge. Comme elle est bornée, elle a cependant une sous-suite $(u_{\varphi(n)})_n$ convergente d'après le théorème de Bolzano-Weierstrass. Notons ℓ la limite de cette sous-suite, on a $\ell \in [a,b]$ par caractérisation séquentielle des fermés (ou, si on préfère, parce que les inégalités larges passent à la limite). Comme la suite $(u_n)_n$ diverge, en particulier elle ne converge pas vers ℓ , ce qui signifie qu'il existe $\varepsilon > 0$ tel que :

$$\forall n_0 \in \mathbb{N}, \exists n \geqslant n_0, |u_n - \ell| \geqslant \varepsilon \quad (\star)$$

- Pour $n_0=0$, on obtient qu'il existe un rang $\psi(0)$ tel que $|u_{\psi(0)}-\ell|\geqslant \epsilon$.
- Pour $n_0 = \psi(0) + 1$, on obtient qu'il existe un rang $\psi(1) > \psi(0)$ tel que $|u_{\psi(1)} \ell| \ge \epsilon$.
- Pour $n_0 = \psi(1) + 1$, on obtient qu'il existe un rang $\psi(2) > \psi(1)$ tel que $|u_{\psi(2)} \ell| \ge \epsilon$.

On construit ainsi, de proche en proche, une extractrice ψ tel que $\forall n \in \mathbb{N}, |u_{\psi(n)} - \ell| \ge \epsilon$.

La suite $(u_{\psi(n)})_n$ est une sous-suite de la suite $(u_n)_n$ qui est bornée donc $(u_{\psi(n)})_n$ est elle-même bornée. Par conséquent elle a elle-même une sous-suite convergente $(u_{\psi(\gamma(n))})_n$ qui vérifie également $\forall n \in \mathbb{N}, |u_{\psi(\gamma(n))} - \ell| \ge \epsilon$. Notons ℓ_2 sa limite.

Par caractérisation séquentielle des fermés appliqué au fermé $[a, \ell - \varepsilon] \cup [\ell + \varepsilon, b]$ (ou si on préfère parce que la fonction valeur absolue est continue et par passage à la limite des inégalités larges) on a $|\ell_2 - \ell| \ge \varepsilon$ donc en particulier $\ell_2 \ne \ell$. Ainsi $(u_{\psi(\gamma(n))})_n$ sont deux sous-suite de $(u_n)_n$ qui sont convergentes et qui ne convergent pas vers la même limite, ce qui achève la démonstration de la contraposée du sens réciproque.

Exercice 3. Autre méthode pour l'uniforme continuité de $\sqrt{}$

- 1. Justifier rapidement que la fonction $\sqrt{\ }$ est uniformément continue sur [0,2] et sur $[1,+\infty[$.
- 2. En déduire que $\sqrt{}$ est uniformément continue sur \mathbb{R} . Indication : pour $\varepsilon > 0$, on a η_1 associé par UC sur [0,2] et η_2 associé par UC sur $[1,+\infty[$, on peut alors poser $\eta = \min(\eta_1,\eta_2,1)$.
- 1. L'intervalle [0,2] est un segment donc la fonction $\sqrt{}$ qui est continue est uniformément continue sur [0,2] d'après le théorème de Heine.

Sur $[1, +\infty[$, la fonction $\sqrt{\ }$ est $\frac{1}{2}$ -lipschitzienne. En effet pour $x, a \in [1, +\infty[$ on a $\sqrt{x} + \sqrt{a} \geqslant 2$ donc $\left|\sqrt{x} - \sqrt{a}\right| = \left|\frac{x-a}{\sqrt{x}+\sqrt{a}}\right| \leqslant \frac{1}{2}|x-a|$. En particulier, la fonction $\sqrt{\ }$ est lipschitzienne, donc uniformément continue.

2. Soit $\varepsilon > 0$.

Par uniforme continuité de $\sqrt{\ }$ sur [0,2] il existe $\eta_1>0$ tel que :

$$\forall x, a \in [0, 2], |x - a| < \eta_1 \Rightarrow |f(x) - f(a)| < \varepsilon \quad (\star).$$

Par uniforme continuité de $\sqrt{\ }$ sur $[1,+\infty[$ il existe $\eta_2>0$ tel que :

$$\forall x, a \in [1, +\infty[, |x - a| < \eta_2 \Rightarrow |f(x) - f(a)| < \varepsilon \ (\star\star).$$

Posons $\eta = \min(\eta_1, \eta_2, 1)$. Soient $x, a \in \mathbb{R}_+$ et supposons $|x - a| < \eta$. À renommage prés, on a $x \leqslant a$. On a $|x - a| < \eta$ donc en particulier |x - a| < 1, il est donc impossible qu'on ait $x \in [0, 1]$ et $a \in [1, +\infty[$. On a donc seulement deux cas : soit $x, a \in [0, 2]$, soit $x, a \in [1, +\infty[$, dans chaque cas, en utilisant le fait que η est inférieur à η_1 et η_2 , et en utilisant (\star) ou $(\star\star)$, on obtient bien $|f(x) - f(a)| < \varepsilon$. \odot

EXMCOMPAT

$$\frac{2/1}{q_n} \xrightarrow[n \to \infty]{} x \notin \mathbb{Q}$$

Par l'absurde Supp 9 00 +00

Donc d'ap. <u>l'indication</u> q a une sous-suite q • ¢ majorèe disons pour un certain M.

On $\forall n \in \mathbb{N}$, $q_n \geq 0$ donc $\forall n \in \mathbb{N}$, $0 \leq q_p(n) \leq M$ Donc $q \circ \varphi$ est bornée donc d'après B-W elle a une sous-suite $q \circ \varphi \circ \Psi$ (qui est une sous-suite de q) convergeunte.

1 := 1 m 90 00 4

Or $q \circ \phi \circ \psi \in \mathbb{N}^{|N|}$ donc elle est stationnaire donc $l \in \mathbb{N}$

 $p \circ \phi \circ \psi = \phi \circ \phi \cdot \frac{p \circ \phi \circ \psi}{\phi \circ \phi \circ \psi} = \frac{1}{\text{cerveau cosmique}}$ $\Rightarrow \ell \qquad \Rightarrow \chi \quad \text{par thun fondamental the sous-suites}$ $p \circ \phi \circ \psi = \phi \circ \psi \cdot \frac{p \circ \phi \circ \psi}{\phi \circ \psi} = \frac{1}{\text{car } \theta \to \chi}$

donc $p \circ \phi \circ \psi$ est une suite d'entiers qui converge donc $p \circ \phi \circ \psi$ converge donc $ext{l} \in \mathbb{Z}$ d'ai $ext{l} x = ext{l} x \in \mathbb{Z}$

d'aû
$$|q| = |q \frac{p}{q}|$$
 cerveau cosmique
$$= q \left| \frac{p}{q} \right| \quad \text{cor } q \geqslant 0 \Rightarrow |q| = q$$

$$+\infty \rightarrow |x| > 0 \quad \text{cor } x \in |R| \oplus x \neq 0$$

donc Ipl -> 00 por PAL.

2/2 Soit popcorn = f

Ma popoorn est discontinue en tout rationnel réèl.

Soit $a \in \mathbb{Q}$. Notions $a = \frac{1}{9}$ sont écriture irred.

On a popcorn(a) = $\frac{1}{9}$

 $R \setminus Q$ est dense dons R done il existe $V \in (R \setminus Q)^{IN}$ tel que $V \longrightarrow a$

On a alors popcoun o $\psi = 0 \longrightarrow 0 \neq popcorn(a)$ (ar $\psi \neq q$

Par CSC, popcorn est discontinue en a (contraposee)

Mq poporn est continue en tout reel invationnel

Par CSC. Soit uE R/Q

Soit u∈RN to u → a

Traitons 3 cas.

```
1er cas (u∈(R\Q)IN APCR):
    alors popcorn (U_n) = 0 \xrightarrow{n \to \infty} 0 = pepcorn(a) APCR n
Ze cus (ueQM à pcr):
   On note u = \frac{Pn}{9n} ecriture irred APCR n
   et u \rightarrow a \not\in \mathbb{Q}
  D'aprè 2/1, q \rightarrow +\infty
 donc poporn o u = \frac{1}{9} \longrightarrow 0 = poporn(a)
3º cus (#(vi(IN)∩Q)=+∞ et #(vi(NI)∩(R/Q))=+∞):
  Notons \{(u \circ \psi)^2(iH) \subseteq \mathbb{R} \setminus \mathbb{Q} \} on prend les s-suites \{(u \circ \psi)^2(iH) \subseteq \mathbb{Q} \} \mathbb{Q} et \mathbb{R} \setminus \mathbb{Q}
  Par definition, \forall n \in \mathbb{N}, \exists k \in \mathbb{N}, n = \mathcal{C}(k) \times \text{or } n = \mathcal{V}(k)
  D'après le 1er cas, popcorre o u 0 4 -> 0
                    2° cos, popcorn o u o y → o
  Soit E>O. [Il existe no EN to Yn>no, | popcornoucy-0] < E
[Il existe no EN to Yn>no, | popcornoucy-0] < E
   Posons no = max {\Psi(n_{\psi}), \Psi(n_{\psi})}
   Soit n≥no.
   Ainsi il existe k \in \mathbb{N} to \begin{cases} n = \ell(k) \\ \times \text{or} \\ n = \psi(k) \end{cases}
  1er CYKA (n= (R)):
          \varphi(A) \geqslant n_0 \geqslant \varphi(n_0)
           > k> ne car e=>
           \Rightarrow | popcorn (u_n)| = | popcorn(u_{\varphi(n)}) | < \varepsilon
```

$$\Psi(k) \geqslant n_0 \geqslant \Psi(n_{\psi})$$

$$\Rightarrow |popcorn(u_n)| = |popcorn(u_{\psi(n)})| < \varepsilon$$

d'oà popuorno
$$u \longrightarrow 0 = poycorn(a)$$

Exercice 4. Continuité et bornitude

On suppose que $f, g : \mathbb{R} \to \mathbb{R}$ vérifient :

i/f continue

ii/gbornée

Montrer que $g \circ f$ et $f \circ g$ sont bornées.

Traduisons : « g est bornée » signifie qu'il existe $a \leq b \in \mathbb{R}$ tels que $g(\mathbb{R}) \subset [a,b]$ (c'est une image directe).

- 1. On a $f(\mathbb{R}) \subset \mathbb{R}$ par définition (c'est une image directe). En utilisant des propriétés assez immédiates (mais à savoir montrer) de l'image directe, on a $(g \circ f)(\mathbb{R}) = g(f(\mathbb{R})) \subset g(\mathbb{R}) \subset [a,b]$ donc $g \circ f$ est bornée.
- 2. On a f([a,b]) qui est un segment car f est continue. Notons $[\alpha,\beta]=f([a,b])$. En utilisant toujours les mêmes propriétés assez immédiates de l'image directe : $(f \circ g)(\mathbb{R})=f(g(\mathbb{R})) \subset f([a,b])=[\alpha,\beta]$ donc $f \circ g$ est bornée.

Exercice 5. © * Fonctions bornées

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{t \to \infty} f$ et $\lim_{t \to \infty} f$ existent et sont finies.
 - a. Montrer que f est bornée.

On écrira que « f est bornée par K sur I » pour dire : $|f| \leqslant K$ sur I.

On a $\lim_{N \to \infty} f$ finie donc d'après le cours f est bornée, disons par K_1 , au voisinage de $-\infty$, i. e. sur un intervalle de la forme $]-\infty,A]$. On a $\lim_{N \to \infty} f$ finie donc d'après le cours f est bornée, disons par K_2 , au voisinage de $+\infty$, i. e. sur un intervalle de la forme $[B, +\infty[$. Si $A \ge B$ alors f est bornée par $\max(K_1, K_2)$ sur \mathbb{R} , il n'y a rien à faire. Sinon 1 on utilise le théorème des bornes atteintes : f est continue sur [A, B] donc bornée sur [A, B], disons par K_3 , et donc f est bornée par $\max(K_1, K_2, K_3)$ sur \mathbb{R} .

b. Atteint-elle nécessairement ses bornes? Une de ses deux bornes?

La fonction arctan est un contre-exemple simple aux deux questions.

c. Mêmes questions si $\lim_{+\infty} f = \lim_{-\infty} f$.

Dans ce cas une des deux bornes est atteinte. On traite deux cas :

- Soit f est constante. Bon, elle atteint ses deux bornes en tout point, c'est vu.
- Soit f n'est pas constante. Il existe donc $x_0 \in \mathbb{R}$ tel que $f(x_0) \neq \lim_{t \to \infty} f = \lim_{t \to \infty} f$. Quitte à changer f en -f (ce qui échange donc borne sup et borne inf), disons qu'on a $f(x_0) > \lim_{t \to \infty} f = \lim_{t \to \infty} f$. Un résultat du cours sur les limites assure donc qu'il existe A et B tels que $f < f(x_0)$ sur $] \infty$, A[et $f > f(x_0)$ sur $]B, +\infty[$. Par conséquent, on a sup $f = \sup_{[A,B]} f$ qui est atteint par théorème des bornes atteintes.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue telle que $\lim_{t \to \infty} f = \lim_{t \to \infty} f = +\infty$. Montrer que f admet un minimum sur \mathbb{R} . Pareil qu'à la question précédente, en plus simple : il existe A et B tels que f > f(0) sur $]-\infty, A]$ et sur $[B, +\infty[$ d'après le même résultat du cours sur les limites. Donc $\inf_{\mathbb{R}} f = \inf_{[A,B]} f$ qui est atteint par thm. des bornes atteintes.

Autre méthode (c'est une astuce mais recyclable) : on pose $g = \arctan \circ f$. La fonction g vérifie les hypothèses de 1.c. donc atteint une de ses deux bornes, nécessairement son min puisqu'on a $g < \frac{\pi}{2}$. Par stricte croissance de arctan il en est de même pour f.

Énoncé disponible à l'adresse suivante : http://mpsi.daudet.free.fr/.

N'hésitez pas à me poser tout type de question sur un point qui ne vous paraît pas clair par mail à l'adresse abbrug@gmail.com.

^{1.} Ce cas englobe en fait l'autre.

f est bornée et atteint ses bornes d'après le thun des bornes atteintes.

$$\begin{cases}
\mathbf{m} := \inf_{[a,b]} f \\
\mathbf{M} := \sup_{[a,b]} f
\end{cases}$$

On a
$$m \leq f \leq M$$

 $\Leftrightarrow \int_a^b m \leq \int_a^b \leq \int_a^b M$ par croissance de $\int_a^b (b-a)m \leq \int_a^b f \leq (b-a)M$

Traitons deux cas.

$$\underline{1^{er} \cos (a < b)}:$$

$$m \leq \frac{1}{b-a} \int_{a}^{b} f \leq M \quad \text{if } \frac{1}{b-a} \int_{a}^{b} f \in [m, M]$$

D'apnès le TVI sur un l'ermé (car les bornes sont atteintes), il existe $c \in [a, b]$ tel que $f(c) = \frac{1}{b-a} \int_{-a}^{b} f$

$$2^{e}\cos(a=b):$$

$$0 \le \int_{a}^{b} f \le 0 \quad \text{ie } \int_{a}^{b} f = 0 \quad \text{donc} \quad f(h) = 0$$

$$\begin{cases} u := \frac{id}{n+1} \\ v := f \end{cases} \Rightarrow \begin{cases} u' = id^n \\ v' = f' \end{cases}$$

$$\int_{0}^{1} t^{n} f(t) dt = \int_{0}^{1} u'(t) v(t) dt$$

$$= \left[u \cdot v \right]_{0}^{1} - \int_{0}^{1} u(t) v'(t) dt \quad con u, v \in C^{1}$$

$$= \left[\frac{id^{n+1} f}{n+1} \right]_{0}^{1} - \frac{1}{n+1} \int_{0}^{1} t^{n+1} f'(t) dt$$

$$= : \frac{f(t)}{n+1} - \frac{1}{n+1} \int_{n+1}^{1} dt$$

(En notant
$$J_n := \int_0^1 t^n f'(t) dt$$
)

En cappliquent 7/1 à f' qui est bien continue, en obtient $(J_n)_{n\in\mathbb{N}} \longrightarrow 0$ donc $(J_{n+1})_{n\in\mathbb{N}} \longrightarrow 0$

d'où
$$I_n = \frac{f(1)}{n+1} + \frac{J_{n+1}}{n+1} = \frac{1}{n+1} \left(f(1) + J_{n+1} \right)$$

Si $f(1) \neq 0$, $f(1) + J_{n+1} \longrightarrow f(1)$

ie $f(1) + J_{n+1} \sim f(1)$

d'où
$$I_n \sim \frac{f(1)}{n+1} \sim \frac{f(1)}{n}$$

En general,

$$I_{n} = \frac{1}{n+1} \left(f(1) + J_{n+1} \right)$$

$$= \frac{1}{n+1} \left(f(1) + O(1) \right)$$

$$= \frac{1}{n} \frac{1}{1+\frac{1}{n}} \left(f(1) + O(1) \right)$$

$$= \frac{1}{n} \left(1 + O(1) \right) \left(f(1) + O(1) \right)$$

$$= \frac{1}{n} \left(f(1) + O(1) \right)$$

$$= \frac{1}{n} \left(f(1) + O(1) \right)$$

$$= \frac{f(1)}{n} + O(\frac{1}{n})$$

$$I_n = \frac{f(1)}{n+1} + \frac{1}{n+1} \int_0^1 t^{n+1} f(t) dt$$

En appliquent le résultat en 7/1 à f'qui est bien C1 on obtient

$$\int_{0}^{1} t^{n+1} f'(t) dt = \frac{f'(1)}{n+2} - \frac{1}{n+2} \int_{0}^{1} t^{n+2} f''(t) dt$$

$$\longrightarrow 0$$

$$d'après 7/1$$

$$applique à f''$$
qui est bien C'

d'où
$$I_n = \frac{f(4)}{n+1} - \frac{f'(4)}{(n+1)(n+2)} + \frac{O(4)}{(n+1)(n+2)}$$

$$=\frac{f(1)}{n}+\frac{1}{1+\frac{1}{n}}-\frac{f'(1)}{n^2}\frac{1}{(1+\frac{1}{n})(1+\frac{2}{n})}.$$

$$+\frac{O(1)}{(n+1)(n+2)}$$

$$= \frac{f(1)}{n} \left(1 - \frac{1}{n} + \mathcal{O}(\frac{1}{n}) \right) - \frac{f'(1)}{n^2} \left(1 + \mathcal{O}(1) \right) + \mathcal{O}(\frac{1}{n^2})$$

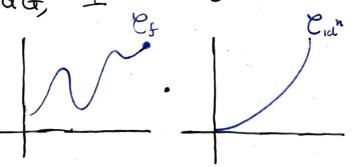
$$= \frac{f(1)}{n} - \frac{f(1) + f'(1)}{n^2} + O(\frac{1}{n^2})$$

$$\forall t \in [0, 1], t^n m \leq t^n f(t) \leq t^n M$$

par croissance de
$$\int_{0}^{1} t^{n} m \, dt \leq \int_{0}^{1} t^{n} f(t) \, dt \leq \int_{0}^{1} t^{n} M \, dt$$
ie $\frac{m}{n+1} \leq T_{n} \leq \frac{M}{n+1}$

$$\lim_{n \to \infty} 0$$

Par Tola, I -> 0



Ef.id?

¹ Théorème des bornes atteintes

INTÉGRATION

Exercice 6. Égalité de la moyenne

Soit $f:[a,b]\to\mathbb{R}$ continue, avec $a\leqslant b$. Montrer qu'il existe $c\in[a,b]$ tel que $\int_a^b f(t)\ \mathrm{d}t=(b-a)f(c)$.

 $Indication: justifier \ que \ m = \inf_{[a,b]} f \ et \ M = \sup_{[a,b]} f \ existent \ et \ appliquer \ convenablement \ le \ TVI.$

Exercice 7. Développement asymptotique d'une suite d'intégrales

Soit $f:[0,1]\to\mathbb{R}$, intégrable. On note $I_n=\int_0^1 t^n f(t) dt$.

- 1. On suppose $f \in \mathcal{C}([0,1],\mathbb{R})$. Montrer qu'on a $I_n \xrightarrow[n \to \infty]{} 0$.
- 2. On suppose $f \in \mathcal{C}^1([0,1],\mathbb{R})$. Montrer qu'on a $I_n = \frac{f(1)}{n} + o(\frac{1}{n})$. En particulier si on a $f(1) \neq 0$ alors on a $I_n \sim \frac{f(1)}{n}$.
- 3. On suppose $f \in \mathcal{C}^2([0,1],\mathbb{R})$. Montrer qu'on a $I_n = \frac{f(1)}{n} \frac{f(1) + f'(1)}{n^2} + o(\frac{1}{n^2})$.