I Méthode de Newton

Condition d'arrêt $\neg(|f'(u)| \ge \epsilon)$ Itération $u \leftarrow u - \frac{f(u)}{f'(u)}$

II Méthode de la sécante

Condition d'arrêt

Itération $u \leftarrow u - \tau_{u_{-1}}(u)f(u)$

III Pivot de Gauss

III.1 Descente

III.1.1 Recherche du pivot

- $1. \ p \leftarrow \max\{|A[\Box,j]|, \quad \Box: j \rightarrow \mathrm{lignes}(A)\}$
- 2. Si $p \neq j$, pour A et $b : [p, j] \rightarrow [j, p]$

III.1.2 Élimination bas

- 1. Pour $\square: j+1 \to \text{lignes}(A)$
 - Pour A et $b: M[] \leftarrow M[] \frac{A[\Box, j]}{A[j, j]} M[j]$

III.1.3 Descente

- 1. Pour $j: 0 \to \text{colonnes}(A)$ -1
 - recherche_pivot(A, b, j)
 - $élimination_bas(A, b, j)$

III.2 Remontée

III.2.1 Élimination haut

- 1. Pour $\Box: j+1 \to \text{lignes}(A)$
 - $--b[] \leftarrow b[] \frac{A[\Box,j]}{A[j,j]}b[j]$

III.2.2 Remontée

- 1. Pour $j : \text{colonnes}(A) 1 \to 0$
 - $\texttt{\'elimination_haut}(A, b, j)$

III.2.3 Solve diagonal

- 1. Pour : $0 \to \text{lignes}(b)$
 - $-b[] \not= A[,]$

III.3 Gauss

- 1. descente
- 2. remontée
- 3. return solve_diagonal(A, b)